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Network Verification

● Sample data plane verification tools:
○ Anteater (SIGCOMM ‘11)
○ NetPlumber (NSDI ‘13)

● Sample control plane verification tools:
○ rcc (NSDI ’05)
○ Batfish (NSDI ‘15)
○ ARC (SIGGCOMM ‘16)
○ NV (PLDI ‘20)
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Outline

1. Overview of NV and its capabilities

2. Speeding up verification with Hiding

3. Wrap-up
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NV: A network verification language
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Neighbors might send arbitrary messages
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Solution: Use an SMT Solver
● Find a steady state for the network, where no node prefers any of its 

neighbors’ attributes to its own
● Simulator computes a steady state, but there may be multiple
● SMT solver checks if the assertion may be violated by any steady state
● Requires heavy simplification to translate NV into SMT constraints

NV Transformation 
Pipeline SMT Solver

Verified

Counter-
example

User spec
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Transformation pipeline (for SMT)

User Program Type Inference Record Unrolling Inlining

Map UnrollingEdge UnboxingOption UnboxingTuple Flattening

Slicing (optional) Unit Unboxing Z3SMT Encoding

BLUE boxes are compositional NV-to-NV transformations
Most blue boxes use a centralized mechanism for specifying transformations 20



Transformation pipeline (for SMT)

User Program Type Inference Record Unrolling Inlining

Map UnrollingEdge UnboxingOption UnboxingTuple Flattening

Slicing (optional) Unit Unboxing Z3SMT Encoding

Map Unrolling has been particularly challenging
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Maps in NV

● Maps (or dictionaries) are commonly used in networking
● NV maps are total
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Encoding Map Operations

● Some dictionary operations require quantifiers to encode into SMT
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Encoding Map Operations

● Some dictionary operations require quantifiers to encode into SMT

● In general, quantifiers in SMT are not complete 
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Static keys

● Observation: In real networks, map keys are usually known in advance
○ E.g. Routers originate a fixed, known set of destinations
○ We see expression like  m[3] , never  m[...complicated computation…]_   
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Static keys

● Observation: In real networks, map keys are usually known in advance
○ E.g. Routers originate a fixed, known set of destinations
○ We see expression like  m[3] , never  m[...complicated computation…]_   

● Hence we can figure out which keys will be relevant statically by simply 
scanning the program!
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Only keys used 
are 3, 4, 7!



Map Unrolling

● Finitize maps by transforming them into tuples, with one element for each key 
that is used

● Require all map keys in NV programs to be literals
● Doesn’t hinder translation of configs in practice
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Overview of NV

● NV is a programming language in which programs are descriptions of 
networks

● Networks may be verified either with a simulator or an SMT solver

● We use a pipeline of compositional transformations to translate NV programs 
into SMT constraints

● We encode dictionaries as tuples using Map Unrolling
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Problem: SMT analysis doesn’t scale well
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Networks contain a lot of irrelevant information

● Observation: Network operators may not utilize every feature of every network 
protocol

● Observation: Not all features that are used may be relevant to the property 
we’re verifying

○ E.g. checking the existence of a path may not require any information about that path’s length

● Idea: Speed up verification by removing irrelevant information from the 
network
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Many SMT constraints may be irrelevant

● Observation: SMT solving is worst-case exponential in the number of 
variables (for us, this is roughly equal to the number of constraints)

● Observation: Most SMT constraints simply describe the stable state of the 
network, and are rarely UNSAT. Only a few represent the assertion.

● Idea: hide all the constraints except the assertion, and iteratively unhide them 
only when they become relevant (CEGAR-style).
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Hiding -- Initial Program
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Hiding -- Iteration 1
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Hiding -- Iteration 2
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Hiding -- Iteration 2
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Hidden Program Full Program
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Hiding -- Iteration 3
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Hiding -- Iteration 3
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Hiding -- Iteration 3
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Hidden Program Full Program

UNSAT Must also be UNSAT!



Hiding - Algorithm Sketch

1. Create two copies of the SMT program -- one full, one with some constraints hidden

2. Check satisfiability for the hidden program
a. If it’s UNSAT, then so is the full program, so return.

b. If it’s SAT, test the model on the full program

3. If the model extends to the full program, then it is also SAT, so return the full model

4. Otherwise, refine the hidden program by unhiding some constraints
a. Add constraints for all variables that appear in the UNSAT core

5. Go to step 2
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Guaranteed to terminate after a finite number of 
iterations, with the same result as the full program!



Experimental Results
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Future Work

● Heuristics for unhiding variables

● DSL for specifying which variables should start hidden
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Related Work on Hiding

● Hiding-style techniques were first proposed by Robert Kurshnan in 1994
○ Maintains relationships between variable using a variable dependency graph
○ It was also inspiration for the the original CEGAR paper in 2000

● In 2007, Wang, Kim and Gupta proposed Hybrid CEGAR, which combines 
hiding with predicate abstraction

● The Corral verifier for Boogie (2011) practices a similar technique by only 
inlining a few functions, then adding more as needed.
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Comparison of Hiding to Other Abstraction 
Techniques

● CEGAR algorithm
○ Generates possibly-spurious counterexamples, then refines its abstraction

● Guaranteed to terminate

● No false positives or negatives

● Subset of existing constraints
○ Can only use relationships that exist in the original constraints
○ Can’t replace data structures or relationships with more abstract versions
○ Could be combined with such techniques, however
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In Summary...

● I presented my work on developing NV, a programming language for network 
verification

● I worked on a pipeline of simplifications for encoding NV into SMT constraints

● I wrote an algorithm called Hiding which aims to speed up verification by 
removing irrelevant information

● Initial tests for hiding indicate that it can discover effective abstractions, but 
takes too long to do so

● Future work involves heuristics and hints to make hiding converge faster
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Questions?

54


