Automatically Discovering
Abstractions for Network
Verification

Devon Loehr

Networks are buggy, and that doesn'’t surprise you

Google outage hits Gmail, Snapchat and
Nest

Google Compute Engine Historic

Company investigating after Cloud Platform problem causes email
delivery failures

g 54 minutes

WEBSITE OUTAGES IN THE LAST HOUR

ecembe a minutes 9 6 5 5
/embe ng 1 hour 43 minutes o ’
10.8k M\
i i 8k

24h 12h Now

minutes
Lowest Average Highest ‘ G/);(,}/,

8,843 9,744 10,839 i

Networks are buggy, and that doesn'’t surprise you

Google outage hits Gmail, Snapchat and
Nest

Istoric

—*~ after Cloud Platform problem causes email

GitHub Suffers Outage Amid Microsoft
Cloud Capacity Crunch

WEBSITE OUTAGES IN THE LAST HOUR

9,655 |
GCE19010 3 1 hour tes ~ ’
10.8k
GCE19008 3egan 31 Octol ours 30 minutes \’fw\
) 8k
-) 24h 12h Now
)7 3ega es
Lowest Average Highest
9,744 expected to solve the problem with Gmail in the near future. Photograph: NurPhoto/NurPhoto via

““ Apple iMessage, Mail, and other iCloud services are
~=='experiencing slower than normal performance'

Networks are buggy, and that doesn'’t surprise you

Comcast Outage : Comcast Google outage hits Gmail, Snapchat and
Internet Down (Xfinity internet not Nest

working) : Xfinity Outage

— -~ after Cloud Platform problem causes email

| GitHub Suffers Outage Amid Microsoft
Cloud Capacity Crunch

WEBSITE OUTAGES IN THE LAST HOUR

.

9 6 5 5 Facebook and Instagram are back up
’ . N

108 M\ after some users experienced issues

8k Many users reported missing images on the platforms.

24h 12h Now

ak
COMCAST

Lowest Average Highest

8,843 9.744 10,839 i s ——

" Apple iMessage, Mail, and other iCloud services are
*='axperiencing slower than normal performance'

rs1m

ur

[April 09] Verizon outage: Cell service down and not working for maiy

Networks are buggy, and that doesn'’t surprise you

Comcast Outage : Comcast Google outage hits Gmail, Snapchat and
Internet Down (Xfinity internet not Nest

worklng) Xfinity Outage

- after Cloud Platform problem causes email

GitHub Suffers Outage Amid Microsoft
Cloud Capacity Crunch

WEBSITE OUTAGES IN THE LAST HOUR

[U: Caused by router failure] It's not just you, some *»
Google services ore no’r working

e Apple iMessage, Mail, and other iCloud services are
mwee i laypariencing slower than normal performance!

[April 09] Verizon outage: Cell service down and not working for many

Network Verification

e Sample data plane verification tools:
o Anteater (SIGCOMM ‘11)
o NetPlumber (NSDI ‘“13)

e Sample control plane verification tools:
o rcc (NSDI’095)
o Batfish (NSDI “15)
o ARC (SIGGCOMM ‘16)
o NV (PLDI ‘20)

Outline

1. Overview of NV and its capabilities

2. Speeding up verification with Hiding

3. Wrap-up

NV: A network verification language

let nodes = 3
let edges = { 0-1; 1-2; }

Topology

NV: A network verification language

let nodes = 3
let edges = { 0-1; 1-2; }

type attribute = (int, tnode)

S omm o Attributes

match node with
“lllllll) “lllllll) “lllllll’

| en — (©, node)
(0, On) (99, 1n) (99, 2n)

| _ —=(99, node)

NV: A network verification language

let nodes = 3
let edges = { 0-1; 1-2; }

type attribute = (int, tnode)

L Passing

match node with
| en — (0, node)

e il messages

let trans edge x =
let (dist, origin) = x 1in

(dist+1, origin) ‘
_> _>

(0, On) (99, 1n) (99, 2n)

10

NV: A network verification language

let nodes = 3
let edges = { 0-1; 1-2; }

type attribute = (int, tnode)

L Recelving

match node with
| en — (0, node)

e il messages

let trans edge x =
let (dist, origin) = x 1in

(dist+1, origin)
>>
let merge node x y
let (xdist, _) = in

let (ydist, _) in
if xdistl < ydist then x else y 0 On) 99 1n) 99 2n

1
b S S |

NV: A network verification language

let nodes = 3
let edges = { 0-1; 1-2; }

type attribute = (int, tnode)

L Recelving

match node with
| en — (0, node)

e il messages

let trans edge x =
let (dist, origin) = x 1in

(dist+1, origin)
>>
let merge node x y
let (xdist, _) = in

let (ydist, _) in
if xdistl < ydist then x else y 0 On) 1 On) 99 2n

1
b S S |

NV: A network verification language

let nodes = 3
let edges = { 0-1; 1-2; }

type attribute = (int, tnode)

L Recelving

match node with
| en — (0, node)

e il messages

let trans edge x =
let (dist, origin) = x 1in

(dist+1, origin)
>>
let merge node x y
let (xdist, _) = in

let (ydist, _) in
if xdistl < ydist then x else y 0 On) 1 On) 99 2n

1
b S S |

NV: A network verification language

let nodes = 3
let edges = { 0-1; 1-2; }

type attribute = (int, tnode)

L Recelving

match node with
| en — (0, node)

e il messages

let trans edge x =
let (dist, origin) = x 1in

(dist+1, origin)
>>
let merge node x y
let (xdist, _) = in

let (ydist, _) in
if xdistl < ydist then x else y 0 On) 1 On) 99 2n

1
b S S |

NV: A network verification language

3
L S R ey B -

let nodes

let edges

type attribute = (int, tnode)

Steady state

match node with
| en — (©, node)
| _ —=(99, node)

let trans edge x =
let (dist, origin) = x 1in

(dist+1, origin)
>>
let merge node x y =
let (xdist, _) = in

X
let (ydist, _) y in
if xdistl < ydist then x else y 0 On) 1 On) (2 On)

let sol = solution {init; trans; merge;}

15

NV: A network verification language

3
{ 6-1; 1-25 }

let nodes

let edges

type attribute = (int, tnode)

e o Verifying

match node with
| en — (©, node)

e properties

let trans edge x =
let (dist, origin) = x 1in

(dist+1, origin)
>>
let merge node x y =
let (xdist, _) = in

= x

let (ydist, _) =y in

if xdistl < ydist then x else y 0 On) 1 On) (2 On)
let sol = solution {init; trans; merge;} true true true

assert (forall n : tnode,
let (_, origin) = sol[n] in
origin = 0On) 16

Neighbors might send arbitrary messages

let nodes = 4
let edges = { 06-1; 1-2; 3-2; }

type attribute = (int, tnode)
?
symbolic hijack_attr : -int (’ 3n)

let init node =
match node with
| en — (0, node)
| 3n = (hijack_attr, node)
| - =>(99, node)

let trans edge x =

let (dist, origin) = x in
(dist+1, origin)

let merge node x y
let (xdist, _) X in
let (ydist, _) =y in —_— —_—
if xdistl < ydist then x else y

let sol = solution {init; trans; merge;} (O’ On) (99’ 1n) (99, 2n)

assert (forall n : tnode,

]

if n = 3n then true else
let (_, origin) = sol[n] in
origin = On)

17

Neighbors might send arbitrary messages

let nodes = 4
let edges = { 06-1; 1-2; 3-2; }

true

type attribute = (int, tnode)
?
symbolic hijack_attr : -int (’ 3n)

let init node =
match node with
| en = (@, node)
| 3n = (hijack_attr, node)
| - =>(99, node)

let trans edge x =
let (dist, origin) = x in
(dist+1l, origin)

let merge node x y =
let (xdist, _) X in
let (ydist, _) =y in —_— —_—
if xdistl < ydist then x else y

let sol = solution {init; trans; merge;} (O On) (1 On (?r) t??)

assert (forall n : tnode,

true true

if n = 3n then true else
let (_, origin) = sol[n] in
origin = On)

18

Solution: Use an SMT Solver

Find a steady state for the network, where no node prefers any of its
neighbors’ attributes to its own

Simulator computes a steady state, but there may be multiple

SMT solver checks if the assertion may be violated by any steady state
Requires heavy simplification to translate NV into SMT constraints

19

Transformation pipeline (for SMT)

User Program

Tuple Flattening po mmm Option Unboxing e mm Edge Unboxing pemee Map Unrolling

\/

Slicing (optional) wem = Unit Unboxing s s

BLUE boxes are compositional NV-to-NV transformations
Most blue boxes use a centralized mechanism for specifying transformations

20

Transformation pipeline (for SMT)

User Program g & [ype Inference m a Record Unrolling —»m

Tuple Flattening s mem Option Unboxing s mm Edge Unboxing o mm Map Unrolling

Slicing (optional) wem = Unit Unboxing s s

Map Unrolling has been particularly challenging

21

Maps in NV

e Maps (or dictionaries) are commonly used in networking
e NV maps are total
type tmap = dict[int, bool]

r g

o |

let

m : tmap = CreateDict false 1in
let m = m[3 := true] 1in
let m = m[7 := true] 1in
let x = m[3] 1in
let v = m[4] 1in

X && Yy

22

Encoding Map Operations

Some dictionary operations require quantifiers to encode into SMT

letm' = map f m 1in

SMT
Encoding

forall k, m'[k] = f (m[k])

23

Encoding Map Operations

Some dictionary operations require quantifiers to encode into SMT

In general, quantifiers in SMT are not complete

letm' = map f m 1in

SMT
Encoding SMT Solver

forall k, m'[k] = f (m[k]) mmmp

24

Static keys

Observation: In real networks, map keys are usually known in advance
o E.g. Routers originate a fixed, known set of destinations

CERCRCTEERCY(I RO RIIGY m[3 | MaEVEI m|...complicated computation. ..]

25

Static keys

e Observation: In real networks, map keys are usually known in advance
o E.g. Routers originate a fixed, known set of destinations

CERRICRCTEERCY(I RO NIIGE m |3 | MaEYEIM m|...complicated computation. ..]

e Hence we can figure out which keys will be relevant statically by simply
scanning the program!

type tmap = dict[int, bool]

let m : tmap = CreateDict false 1in Only keyS USGd
let m = m[3 := true] 1in ‘
let m = m[7 := true] 1in are 35 45 7'

let x = m[3] 1in
let v = m[4] 1in
X && Yy

26

Map Unrolling

Finitize maps by transforming them into tuples, with one element for each key
that is used

Require all map keys in NV programs to be literals

Doesn’t hinder translation of configs in practice

type tmap = dict[int, bool] type tmap = (bool, bool, bool)

let m : tmap = CreateDict false 1in let m : tmap = (false, false, false) in
let m = m[3 := true] in ‘ let m = (true, false, false) in

let m = m[7 := true] 1in let m = (true, false, true) 1in

let x = m[3] 1in let x = match m with | (v, _, _) = v in
let v = m[4] 1in let y = match m with | (_, v, _) = v in
X && y X && y

27

Overview of NV

NV is a programming language in which programs are descriptions of
networks

Networks may be verified either with a simulator or an SMT solver

We use a pipeline of compositional transformations to translate NV programs
into SMT constraints

We encode dictionaries as tuples using Map Unrolling

xS

Problem: SMT analysis doesn’t scale well

Networks contain a lot of irrelevant information

Observation: Network operators may not utilize every feature of every network
protocol

Observation: Not all features that are used may be relevant to the property
we’re verifying
o E.g. checking the existence of a path may not require any information about that path’s length

Idea: Speed up verification by removing irrelevant information from the
network

30

Many SMT constraints may be irrelevant

Observation: SMT solving is worst-case exponential in the number of
variables (for us, this is roughly equal to the number of constraints)

Observation: Most SMT constraints simply describe the stable state of the
network, and are rarely UNSAT. Only a few represent the assertion.

|ldea: hide all the constraints except the assertion, and iteratively unhide them
only when they become relevant (CEGAR-style).

31

Hiding -- Initial Program

X1 =

vl
z1l

X2

y2
y

X0
yO && x0
z0 || (y0 && x0)

x1
vyl && x1
= z1 || (yl && x1)

(vl && y2 || !yl && !y2)

32

Hiding -- lteration

Hidden Program

(yl && y2 ||

lyl && !y2)

X1l =
yi-=

z1l

X2

y2 =
z2 =

1

Full Program

x0
yo && x0
= z0 || (y0 && x0)

x1
yl && x1
z1 || (yl && x1)

(yl & y2 || !yl && !y2)

KK]

Hiding -- lteration

Hidden Program

(yl && y2 ||

lyl && !y2)

X1l =
yi-=

z1l

X2

y2 =
z2 =

1

Full Program

x0
yo && x0
= z0 || (y0 && x0)

x1
yl && x1
z1 || (yl && x1)

(yl & y2 || !yl && !y2)

34

Hiding -- lteration 1

Hidden Program Full Program

X1l = x0
yl = yo0 && x0
z1 = z0 || (y0O && x0)

X2 x1
y2 = yl && x1
z2 = z1 || (yl && x1)

I(yl && y2 || !yl && !y2) (yl & y2 || !yl && !y2)
yl = true
y2 = false

35

Hiding -- lteration 1

Hidden Program Full Program

X1l = x0
yl = yo0 && x0
z1 = z0 || (y0O && x0)

X2 x1
y2 = yl && x1
z2 = z1 || (yl && x1)

I(yl && y2 || !yl && !y2) (yl & y2 || !yl && !y2)
yl = true
y2 = false

36

Hiding -- lteration 2

Hidden Program

X1l = x0
yl = y0 && x0 yl = yo
zl = z0
X2 = x1
y2 = yl && x1 y2 = yl
z2 = z1
I(yl && y2 || !yl && !y2) Pyl &&

Full Program

&& x0
|| (y0 && x0)

&& x1
1| (y1 && x1)

y2 || !yl && !y2)

37

Hiding -- lteration 2

Hidden Program

X1l = x0
yl = y0 && x0 yl = yo
zl = z0
x2 x1
y2 = yl && x1 y2 = yl
z2 = z1
I(yl && y2 || !yl && !y2) Pyl &&

Full Program

&& x0
|| (y0 && x0)

&& x1
1| (yl && x1)

y2 || !yl && !y2)

38

Hiding -- lteration 2

Hidden Program Full Program
X1l = x0
yl = y0 && x0 yl = yo0 && x0

z1 = z0 || (y0O && x0)
X2 = x1

y2 = yl && x1 y2 = yl && x1
z2 = z1 || (yl && x1)

I(yl && y2 || !yl && !y2) (yl & y2 || !yl && !y2)

y0 = y1 = x0 = true
x1l = y2 = false

39

Hiding -- lteration 2

Hidden Program Full Program
X1l = x0
yl = y0 && x0 yl = yo0 && x0

z1 = z0 || (y0O && x0)
X2 = x1

y2 = yl && x1 y2 = yl && x1
z2 = z1 || (yl && x1)

I(yl && y2 || !yl && !y2) (yl & y2 || !yl && !y2)

y0 = y1 = x0 = true
x1l = y2 = false

40

Hiding -- Iteration 3

Hidden Program

X1l = x0
yl = y0 && x0

y2 = yl && x1

I(yl && y2 || !yl && !y2)

Full Program

X1l = x0
yl = yo
z1l = z0O
X2 = x1
y2 = yl
z2 = z1
Pyl &&

&& x0
|| (y0 && x0)

&& x1
|| (yl && x1)

y2 || !yl && !y2)

41

Hiding -- Iteration 3

Hidden Program

X1l = x0
yl = y0 && x0

y2 = yl && x1

I(yl && y2 || !yl && !y2)

Full Program

X1l = x0
yl = yo
z1l = z0O
X2 = x1
y2 = yl
z2 = z1
Pyl &&

&& x0
|| (y0 && x0)

&& x1
|| (yl && x1)

y2 || !yl && !y2)

42

Hiding -- Iteration 3

Hidden Program

X1l = x0
yl = y0 && x0

y2 = yl && x1

I(yl && y2 || !yl && !y2)

Full Program

X1l = x0
yl = yo
z1l = z0O
X2 = x1
y2 = yl
z2 = z1
Pyl &&

&& x0
|| (y0 && x0)

&& x1
|| (yl && x1)

y2 || !yl && !y2)

43

Hiding - Algorithm Sketch

Create two copies of the SMT program -- one full, one with some constraints hidden

Check satisfiability for the hidden program

a. Ifit's UNSAT, then so is the full program, so return.

b. Ifit's SAT, test the model on the full program
If the model extends to the full program, then it is also SAT, so return the full model

Otherwise, refine the hidden program by unhiding some constraints
a. Add constraints for all variables that appear in the UNSAT core

Go to step 2

44

Hiding - Algorithm Sketch

Create two copies of the SMT program -- one full, one with some constraints hidden

Check satisfiability for the hidden program

a. Ifit's UNSAT, then so is the full program, so return.

b. Ifit's SAT, test the model on the full program
If the model extends to the full program, then it is also SAT, so return the full model

Otherwise, refine the hidden program by unhiding some constraints
a. Add constraints for all variables that appear in the UNSAT core

Go to step 2

45

Experimental Results

Control Hiding
File (seconds) | (seconds)

sp4 20
fatdpol 20
sp8 80

46

sp4
fat4pol

Experimental Results

Control Hiding
(seconds) | (seconds) |# lterations

19.9
9358

47

sp4
fat4pol

Experimental Results

Control
(seconds)

Hiding
(seconds)

19.9
9358

% Hidden
0

48

Experimental Results

Control Hiding Last Iteration
File (seconds) | (seconds) |# Iterations| % Hidden | (seconds)

sp4
fat4pol

49

Future Work

Heuristics for unhiding variables

DSL for specifying which variables should start hidden

50

Related Work on Hiding

Hiding-style techniques were first proposed by Robert Kurshnan in 1994
o Maintains relationships between variable using a variable dependency graph
o It was also inspiration for the the original CEGAR paper in 2000

In 2007, Wang, Kim and Gupta proposed Hybrid CEGAR, which combines
hiding with predicate abstraction

The Corral verifier for Boogie (2011) practices a similar technique by only
inlining a few functions, then adding more as needed.

51

Comparison of Hiding to Other Abstraction

Techniques
CEGAR algorithm

o Generates possibly-spurious counterexamples, then refines its abstraction

Guaranteed to terminate
No false positives or negatives

Subset of existing constraints
o Can only use relationships that exist in the original constraints
o Can'’t replace data structures or relationships with more abstract versions
o Could be combined with such techniques, however

52

In Summary...

| presented my work on developing NV, a programming language for network
verification

| worked on a pipeline of simplifications for encoding NV into SMT constraints

| wrote an algorithm called Hiding which aims to speed up verification by
removing irrelevant information

Initial tests for hiding indicate that it can discover effective abstractions, but
takes too long to do so

Future work involves heuristics and hints to make hiding converge faster

53

Questions?

54

