Verified Forward Erasure Correction with Coq and VST

Josh Cohen
1/13/21
Advisor: Andrew Appel
Plan

- Introduction
- Reed-Solomon Overview
- Reed-Solomon Erasure (RSE) Algorithm
- Verification Structure
- Verifying the Functional Model
 - Verifying Gaussian elimination
- Verifying the Implementation
- Results
 - Encoder VST Spec and Correctness Theorem
 - Bug found
- Related Work
- Conclusion and Future Work
Reliable Networking

- How can we ensure network defenses will protect against attackers?
- Attackers may have access to source code, ability to disrupt certain links
- Testing and static analysis not sufficient - need to know that defenses work for all possible inputs
- Larger project (Princeton, Cornell, Peraton Labs) - formally verify network components written in C and P4
- One particular defense - Forward Erasure Correction
Error-Correcting Codes

- Transporting data across network can result in lost packets
- Goal of Forward Erasure Correction - add extra parity packets to allow lost packets to be recovered
- Do so with use of an error-correcting code (ECC)
- ECCs used in cases when retransmission is expensive or impossible (e.g., networks, satellites, etc) and in data storage
- Lots of ECCs exist (Hamming, Reed-Solomon, Convolutional, BCH, etc), most based on fairly sophisticated math
- Correctness is difficult to formally prove
- Erasure code - locations of missing packets are known
Project Goals

- Formally verify real-world C implementation of FEC with Coq and the Verified Software Toolchain (VST)
- C code was originally written by Anthony McAuley of Bellcore in early ‘90s based on algorithm developed by Rabin [Journal of the ACM 1989], McAuley [SIGCOMM 90], and others
- Code has been in active use since
- Verification consists of two very different tasks:
 1. Prove that the underlying algorithm is correct (using Coq and Mathematical Components)
 2. Prove that the C code implements this algorithm correctly (using Coq and VST)
Coq and VST

- Coq is an interactive theorem prover using a higher-order dependently typed logic
- CompCert (Leroy) - optimizing C compiler verified in Coq
- Verified Software Toolchain (Appel) - a program logic for C programs (higher-order separation logic) and proof automation tools for verifying C code
- Proved sound wrt CompCert C
- Formal proof that any theorems proved with VST hold of the assembly code generated by CompCert
FEC Setup

- Append h extra packets to recover up to h lost packets
- Parity packets computed columnwise - we can think of each column as a vector
- Algorithm is based on Reed-Solomon coding (first invented in 1960s)
Reed-Solomon Overview

- Interpret data as a polynomial over a finite field
 - i.e.: \((a_0, a_1, \ldots, a_{k-1}) \rightarrow a_0 + a_1 x + \ldots + a_{k-1} x^{k-1}\)

- Evaluate polynomial at \(k+h\) distinct points in the field

- Equivalently, multiply by Vandermonde matrix

- To make systematic, multiply by row-reduced Vandermonde matrix
Correcting Erasures

- Simpler than full Reed-Solomon because we don’t need to find error locations
- Encoder - multiply input by some weight matrix W:

$$P_{h \times c} = W_{h \times k} \cdot D_{k \times c}$$

- What properties does W need to allow us to decode?
Correcting Erasures

- First, suppose last h data packets are lost, all parities received
- Let D_1 be received data, D_2 be missing data, we have:

\[
W = h \begin{bmatrix}
 k - h & h \\
 W_1 & W_2
\end{bmatrix}
\]

\[
D = k - h \begin{bmatrix}
 c \\
 D_1 \\
 D_2
\end{bmatrix}
\]

\[
P = WD = W_1 D_1 + W_2 D_2
\]

\[
D_2 = (W_2)^{-1}(P - W_1 D_1)
\]

So, we need $(W_2)^{-1}$ (arbitrary $h \times h$ submatrix of W) to be invertible!
Correcting Erasures

- What if some parity packets are lost?
- Let xh be number of lost data packets; we must have received at least xh parities
- Suppose only the first xh parities were received (P_1):

\[
\begin{align*}
\begin{pmatrix}
 k-xh & xh \\
 W_1 & W_2
\end{pmatrix}
\begin{pmatrix}
 D_1 \\
 D_2
\end{pmatrix} &=
\begin{pmatrix}
P_1
\end{pmatrix}
\end{align*}
\]

\[
P_1 = W_1 D_1 + W_2 D_2
\]

\[
D_2 = (W_2)^{-1}(P_1 - W_1 D_1)
\]
Correcting Erasures

- General case is similar, but W_1, W_2, and P_1 may not be contiguous
- We need W_2 to be invertible, where W_2 is any $xh \times xh$ submatrix of W
- In other words, we need every submatrix up to size $h \times h$ to be invertible
- Row-reduced Vandermonde matrix has this (strong) property!

$$V = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
\alpha_1 & \alpha_2 & \cdots & \alpha_{h+k} \\
\alpha_1^2 & \alpha_2^2 & \cdots & \alpha_{h+k}^2 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_1^{h-1} & \alpha_2^{h-1} & \cdots & \alpha_{h+k}^{h-1}
\end{pmatrix}$$

$$V_{h \times (h+k)} \xrightarrow{\text{Gaussian elim}} \begin{bmatrix}
I_{h \times h} & W_{h \times k}
\end{bmatrix}$$
Reed-Solomon Erasure (RSE) Algorithm

- Same as above, but using static weight matrix

- Initialization: create row-reduced Vandermonde matrix (weight matrix)
- Encoder - matrix multiplication ($P = WD$)
- Decoder - 2 matrix multiplications and a matrix inversion ($\left(W_2\right)^{-1}(P_1 - W_1 D_1)$)
Verification Structure

- 2 very different tasks: prove algorithm is correct and prove C code implements algorithm
- Define *functional model* - purely functional version of algorithm written in Gallina using Mathematical Components library (collection of formalized mathematics)
- Can prove properties of functional model completely independent of C program - can be used for other implementations and serves as independent spec
- Prove only that C program implements functional model with VST
- Makes proofs shorter, more modular
- Actually need 2 functional models
- High-level uses uses Mathcomp matrix, ordinal, and polynomial types - abstract and dependently typed
- Low level uses concrete types - list(list byte) and similar
 - nontrivial translation
- Correctness properties only use Mathcomp, refinement proof only uses VST
Verification Example - Gaussian elimination

- Standard algorithm in linear algebra to row reduce a matrix over a field
 - transform using row swaps, scalar multiplication, and adding multiples of rows
- Can be used to calculate inverses, determinants, solve systems of linear equations
- In this application - used to create weight matrix and invert matrix in decoder

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & x_1 & x_2 & x_3 \\
0 & 1 & 0 & x_4 & x_5 & x_6 \\
0 & 0 & 1 & x_7 & x_8 & x_9
\end{pmatrix}
\]
Verification Example - Gaussian elimination

1. Define functional model and prove correctness properties

\[
\begin{bmatrix}
A & I
\end{bmatrix}
\xrightarrow{\text{Gaussian elim}}
\begin{bmatrix}
I & A^{-1}
\end{bmatrix}
\]

Definition

\[
gaussian_elim\ \{m\ n\}\ (A:\ 'M[\ F]_\ (m,\ n)) :=
\text{all_lc_1}\ (gauss_all_steps\ A\ (\text{insub}\ 0\%N)\ (\text{insub}\ 0\%N)).
\]

Definition

\[
\text{find_invmx}\ \{n\}\ (A:\ 'M[\ F]_\ n) :=
\text{rsubmx}\ (gaussian_elim\ (row_mx\ A\ 1\%M)).
\]

Lemma

\[
gaussian_finds_invmx:\ \forall\ \{n\}\ (A:\ 'M[\ F]_\ (n,\ n)),\ A\ \in\ \text{unitmx} \rightarrow
\text{find_invmx}\ A = \text{invmx}\ A.
\]
2. Define low-level functional model and prove equivalence

```plaintext
Definition lmatrix := list (list byte).
Definition gauss_restrict_list m n (mx: lmatrix) :=
   all lc_one_partial m n (gauss_all_steps_list_partial m n mx m) (m-1).
Lemma gauss_restrict_list_equiv: forall {m n} (mx: lmatrix) (Hmn: m <= n),
   wf_lmatrix mx m n ->
   lmatrix_to_mx m n (gauss_restrict_list m n mx) =
   gaussian_elim_restrict_noop (lmatrix_to_mx m n mx) (le Z N Hmn).
```
Verification Example - Gaussian elimination

3. Define and prove VST spec using low-level functional model

```
int fec_matrix_transform (fec_sym * p, fec_sym i_max, fec_sym j_max)
```

Definition
```
definition fec_matrix_transform_spec :=
  DECLARE _fec_matrix_transform
  WITH gv: globals, m : Z, n : Z, mx : list (list byte), s : val, sh: share
  PRE [ tptr tuchar, tuchar, tuchar]
  PROP (0 < m <= n; n <= Byte.max_unsigned; wf_lmatrix mx m n;
    strong_inv_list m n mx; writable_share sh)
  PARAMS (s; Vubyte (Byte.repr m); Vubyte (Byte.repr n))
  GLOBALS (gv)
  SEP (FIELD_TABLES gv;
    data at sh (tarray tuchar (m * n)) (map Vubyte (flatten_mx mx)) s)
  POST [tint]
  PROP()
  RETURN (Vint Int.zero)
  SEP (FIELD_TABLES gv;
    data at sh (tarray tuchar (m * n))
    (map Vubyte (flatten_mx (gauss_restrict_list m n mx))) s).
```

Lemma
```
body_fec_matrix_transform : semax_body Vprog Gprog_f_fec_matrix_transform fec_matrix_transform_spec.
```
Verifying the Functional Model

- Mathcomp includes thousands of theorems about matrices, polynomials, rings and fields, etc
- We needed to prove results about constructing finite fields, computable polynomial division, Gaussian elimination, and properties of Vandermonde matrices
- 2 main challenges
 1. proving that W_2 in decoder is invertible (need sophisticated properties of Vandermonde matrices)
 2. proving that modified Gaussian elimination is correct
Restricted Gaussian Elimination

- C Code does the following: on column r
 - Multiply each row by inverse of r^{th} element
 - Subtract r^{th} row from all other rows
 - At end, scalar multiply to make all leading coefficients 1

- This is “restricted” Gaussian Elimination - only works if all elements in r^{th} column are nonzero!
- C code returns errors if this condition is violated
 - “FEC: swap rows (not done yet!)”
- Suggests that authors were unclear why this was sufficient
Restricted Gaussian Elimination

When does the r^{th} step succeed?

- Assume that first $r-1$ steps succeeded
- Upper left submatrix is diagonal with nonzeros along diagonal
- All other entries in first r columns zero
- Want all $A_{k,r} \neq 0$

For $0 \leq k < r$,

$C_k^r = \text{submatrix including rows } 0 \ldots r-1 \text{ and columns } 0 \ldots r \text{ except } k$

C_k^r is invertible iff $A_{k,r} \neq 0$
Restricted Gaussian Elimination

When does the r^{th} step succeed?

- Assume that first $r-1$ steps succeeded
- Upper left submatrix is diagonal with nonzeroes along diagonal
- All other entries in first r columns zero
- Want all $A_{k,r} \neq 0$

For $k \geq r$,

$R_k^r = \text{submatrix including columns } 0 \ldots r$ and rows $0 \ldots r - 1$ and k

R_k^r is invertible iff $A_{k,r} \neq 0$
Restricted Gaussian Elimination

r^{th} step succeeds iff

C_k^r is invertible for $0 \leq k < r$ and

R_k^r is invertible for $r \leq k < m$

We call this condition r-strongly invertible.

The whole algorithm succeeds iff A is x-strongly invertible for $0 \leq x < m$.

- Strong invertibility is difficult to satisfy in general (requires m^2 specific submatrices to be invertible)
- But the matrices in this application are strongly invertible (this is not trivial to show)
- Result - formal proof that simpler algorithm suffices in this instance
- Shows why this optimization/mistake is correct
Verifying the Implementation

- C code relatively challenging to verify
 - Originally written over 20 years ago
 - Code does clever and not-so-clever things
 - Not written in ways particularly conducive to verification
 - Documentation is very sparse
- Code is verified exactly as written, except that 1 macro was turned into function
- Found 1 bug - used undefined behavior
Verifying the Implementation - Challenges

- Matrices are represented many different ways in memory
 - Pointer to elements, 2D global array, 2D local array (partially filled), unsigned char**
 - Sometimes rows are reversed (for unknown reasons), sometimes not
 - Need lemmas to convert between 1D arrays, 2D arrays, pointers, etc

- Decoder is long and complex - uses about 30 local variables, many nested loops
 - VST becomes very slow and requires significant proof engineering to make verification feasible

- Uses (inconsistent) mix of array indexing and pointer arithmetic
 - Requires lemmas and tactics to relate these memory addresses

```
Lemma data_at_2darray_concat : forall sh t n m (al : list (list (retype t))) p,
  Zlength al = n ->
  forall (fun l => Zlength l = m) al ->
  complete_legal_cosu_type t = true ->
  data_at_sh (tarray (tarray t m) n) al p
  = data_at_sh (tarray t (n * m)) (concat al) p.
```
Definition fec_blk_encode_spec :=

DECLARE fec_blk_encode

lengths : list Z, packet_ptrs: list val, parity_ptrs: list val

PROP (\(0 < k < \text{fec}_n - \text{fec}_\text{max}_h\); \(\theta \leq h \leq \text{fec}_\text{max}_h\); \(\theta < c \leq \text{fec}_\text{max}_\text{cols}\);
\(\text{Zlength packet_ptrs} = k\);:
Forall (fun x => Zlength x <= c) packets;
lengths = map (\(\text{@Zlength byte}\) packets)

PARAMS (Vint (Int.repr k); Vint (Int.repr h); Vint (Int.repr c); pd; pl; ps)

GLOBALS (gv)

SEP (iter_sepcon_arrays parity_ptrs (zseq h (zseq c Byte.zero)));
data_at Ews (tarray (tptr tuchar) (k + h)) (packet_ptrs ++ parity_ptrs) pd;
iter_sepcon_arrays packet_ptrs packets;
data_at Ews (tarray tint k) (map Vint (map Int.repr lengths)) pl;
data_at Ews (tarray tschar k) (zseq k (Vbyte Byte.zero)) ps;
FEC TABLES gv)

POST [tint]

PROP ()

RETURN (Vint \(\text{Int.zero}\))

SEP (iter_sepcon_arrays parity_ptrs (encoder_list h k c packets));
data_at Ews (tarray (tptr tuchar) (k + h)) (packet_ptrs ++ parity_ptrs) pd;
iter_sepcon_arrays packet_ptrs packets;
data_at Ews (tarray tint k) (map Vint (map Int.repr lengths)) pl;
data_at Ews (tarray tschar k) (zseq k (Vbyte Byte.zero)) ps;
FEC TABLES gv).
Correctness Theorem (Low Level)

Theorem decoder_list_correct: forall k c h xh (data packets : list (list byte)).
(parities : list (option (list byte))) (stats : list byte) (lens : list Z) (parbound: Z),
0 < k <= fec_n - 1 - fec_max_h ->
0 < c ->
0 < h <= fec_max_h ->
xh <= h ->
xh <= k ->
0 <= parbound <= h ->
Zlength (filter (fun x => Z.eq dec (Byte.signed x) 1) stats) = xh ->
Zlength (filter isSome (sublist 0 parbound parities)) = xh ->
Zlength parities = h ->
Zlength stats = k ->
Zlength packets = k ->
Zlength data = k ->
Zlength lens = k ->
(fforall i, 0 <= i < k -> Znth i lens = Zlength (Znth i data)) ->
(fforall i, 0 <= i < k -> Zlength i <= () data ->
(fforall i, 0 <= i < k -> Byte.signed (Znth i stats) <= 1%Z -> Znth i packets = Znth i data) ->
(fforall i, in (Some () parities -> Zlength i = c) ->
parities valid k c parities data ->
decoder_list k c packets parities stats lens parbound = data.

Bounds and length info

The lens array is correct
All lengths are bounded by c
The received packets are correct
Parity packets have length c
Received parities were produced by the encoder
Decoder recovers original data
Bug in Implementation

- In Gaussian elimination, have the code shown in 2 separate places
- i ranges from 0 to i_max, p is pointer to input matrix
- When i=0, m points to p-1
- The comparison n > m is undefined behavior (in C11, even the definition of m is undefined behavior)
- VST will not let us prove this program correct without modifying it
Related Work - Network Function Verification

VigNAT [Zaostrovnykh et al., SIGCOMM 2017]: formally verified NAT using symbolic execution and Verifast (semi-automated separation logic tool)

Vigor [Zaostrovnykh et al., SOSP 2019]: extend VigNAT to handle other network functions (load balancer, firewall, etc) and make verification fully automatic

Gravel [Zhang et al., NSDI 2020]: use symbolic execution and SMT solvers to verify middlebox-specific properties of Click elements in C++

All of these efforts are more automatic, but cannot handle FEC - allow only restricted uses of state, do not allow unbounded loops, cannot handle sophisticated mathematical reasoning
Related Work - Formalization of Coding Theory

In **Coq** [Affeldt et al., Journal of Automated Reasoning 2020 and others]: library of formalized coding theory, including Hamming, Reed-Solomon, BCH, and (acyclic) LDPC codes

In **Lean** [Hagiwara et al., ISITA 2015 and Kong et al., ISITA 2018]: formalized Hamming and Insertion-Deletion codes and results about Levenstein distance

In **ACL2** [Nasser et al., Journal of Electronic Testing 2020]: verified Hamming and convolutional codes against a particular memory model
Conclusion and Future Work

- Core FEC code is fully verified
- Code is at https://github.com/verified-network-toolchain/Verified-FEC
- Remaining - code that handles buffer and packet management (calls core FEC code)
- Possible future work - implement incremental FEC encoding and decoding at line rate on an FPGA, verify correctness according to same functional model
Questions?

Thanks for listening!