Verified Forward Erasure Correction with Coq and VST

Josh Cohen
1/13/21
Advisor: Andrew Appel

Plan

- Introduction
- Reed-Solomon Overview
- Reed-Solomon Erasure (RSE) Algorithm
- Verification Structure
- Verifying the Functional Model
- Verifying Gaussian elimination
- Verifying the Implementation
- Results
- Encoder VST Spec and Correctness Theorem
- Bug found
- Related Work
- Conclusion and Future Work

Reliable Networking

- How can we ensure network defenses will protect against attackers?
- Attackers may have access to source code, ability to disrupt certain links
- Testing and static analysis not sufficient - need to know that defenses work for all possible inputs
- Larger project (Princeton, Cornell, Peraton Labs) - formally verify network components written in C and P 4
- One particular defense - Forward Erasure Correction

Error-Correcting Codes

- Transporting data across network can result in lost packets
- Goal of Forward Erasure Correction - add extra parity packets to allow lost packets to be recovered
- Do so with use of an error-correcting code (ECC)
- ECCs used in cases when retransmission is expensive or impossible (eg: networks, satellites, etc) and in data storage
- Lots of ECCs exist (Hamming, Reed-Solomon, Convolutional, BCH, etc), most based on fairly sophisticated math
- Correctness is difficult to formally prove
- Erasure code - locations of missing packets are known

Project Goals

- Formally verify real-world C implementation of FEC with Coq and the Verified Software Toolchain (VST)
- C code was originally written by Anthony McAuley of Bellcore in early '90s based on algorithm developed by Rabin [Journal of the ACM 1989], McAuley [SIGCOMM 90], and others
- Code has been in active use since
- Verification consists of two very different tasks:

1. Prove that the underlying algorithm is correct (using Coq and Mathematical Components)
2. Prove that the C code implements this algorithm correctly (using Coq and VST)

Coq and VST

- Coq is an interactive theorem prover using a higher-order dependently typed logic
- CompCert (Leroy) - optimizing C compiler verified in Coq
- Verified Software Toolchain (Appel) - a program logic for C programs (higher-order separation logic) and proof automation tools for verifying C code
- Proved sound wrt CompCert C
- Formal proof that any theorems proved with VST hold of the assembly code generated by CompCert

FEC Setup

- Append h extra packets to recover up to h lost packets
- Parity packets computed columnwise - we can think of each column as a vector
- Algorithm is based on Reed-Solomon coding (first invented in 1960s)

Reed-Solomon Overview

- Interpret data as a polynomial over a finite field

$$
\text { ie: }\left(a_{0}, a_{1}, \ldots, a_{k-1}\right) \rightarrow a_{0}+a_{1} x+\ldots+a_{k-1} x^{k-1}
$$

- Evaluate polynomial at $k+h$ distinct points in the field
- Equivalently, multiply by Vandermonde matrix

$$
\left[\begin{array}{lll}
a_{0} & a_{1} & a_{2}
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 1 & 1 \\
x_{0} & x_{1} & x_{2} \\
x_{0}^{2} & x_{1}^{2} & x_{2}^{2}
\end{array}\right]
$$

- To make systematic, multiply by row-reduced Vandermonde matrix

$$
\left(\begin{array}{llllll}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36}
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
1 & 0 & 0 & x_{1} & x_{2} & x_{3} \\
0 & 1 & 0 & x_{4} & x_{5} & x_{6} \\
0 & 0 & 1 & x_{7} & x_{8} & x_{9}
\end{array}\right)
$$

Correcting Erasures

- Simpler than full Reed-Solomon because we don't need to find error locations
- Encoder - multiply input by some weight matrix W:

$$
P_{h \times c}=W_{h \times k} \cdot D_{k \times c}
$$

- What properties does W need to allow us to decode?

Correcting Erasures

- First, suppose last h data packets are lost, all parities received
- Let D_{1} be received data, D_{2} be missing data, we have:

$$
\begin{aligned}
& W=h\{[\overbrace{W_{1} \quad W_{2}}^{k-h}] \\
& \left.D=\begin{array}{l}
k-h \\
h
\end{array}\right\}\left[\begin{array}{c}
\overbrace{D_{1}}^{c} \\
D_{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
P=W D=W_{1} D_{1}+W_{2} D_{2} \\
D_{2}=\left(W_{2}\right)^{-1}\left(P-W_{1} D_{1}\right)
\end{gathered}
$$

So, we need $\left(W_{2}\right)^{-1}$ (arbitrary $h \times h$ submatrix of W) to be invertible!

Correcting Erasures

- What if some parity packets are lost?
- Let $x h$ be number of lost data packets; we must have received at least $x h$ parities
- Suppose only the first $x h$ parities were received $\left(P_{f}\right)$:

$$
\begin{gathered}
x h\{(\overbrace{W_{1}} \begin{array}{c}
W_{2} \\
h-x h
\end{array})\binom{D_{1}}{D_{2}}=\left(\begin{array}{l}
P_{1} \\
\end{array}\right)\} x h \\
P_{1}=W_{1} D_{1}+W_{2} D_{2} \\
D_{2}=\left(W_{2}\right)^{-1}\left(P_{1}-W_{1} D_{1}\right)
\end{gathered}
$$

Correcting Erasures

- General case is similar, but W_{1}, W_{2}, and P_{1} may not be contiguous
- We need W_{2} to be invertible, where W_{2} is any $x h \times x h$ submatrix of W
- In other words, we need every submatrix up to size $h \times h$ to be invertible
- Row-reduced Vandermonde matrix has

$$
V=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{h+k} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \ldots & \alpha_{h+k}^{2} \\
\vdots & \vdots & \vdots & \vdots \\
\alpha_{1}^{h-1} & \alpha_{2}^{h-1} & \ldots & \alpha_{h+k}^{h-1}
\end{array}\right)
$$ this (strong) property!

$$
V_{h \times(h+k)} \xrightarrow{\text { Gaussian elim }}\left[I_{h \times h} \mid W_{h \times k}\right]
$$

Reed-Solomon Erasure (RSE) Algorithm

- Same as above, but using static weight matrix
- Initialization: create row-reduced Vandermonde matrix (weight matrix)
- Encoder - matrix multiplication (P=WD)
- Decoder - 2 matrix multiplications and a matrix inversion $\left(\left(W_{2}\right)^{-1}\left(P_{1}-W_{1} D_{1}\right)\right)$

Verification Structure

- 2 very different tasks: prove algorithm is correct and prove C code implements algorithm
- Define functional model - purely functional version of algorithm written in Gallina using Mathematical Components library (collection of formalized mathematics)
- Can prove properties of functional model completely independent of C program - can be used for other implementations and serves as independent spec
- Prove only that C program implements functional model with VST
- Makes proofs shorter, more modular

Verification Structure

- Actually need 2 functional models
- High-level uses uses Mathcomp matrix, ordinal, and polynomial types - abstract and dependently typed
- Low level uses concrete types - list(list byte) and similar
- nontrivial translation
- Correctness properties only use Mathcomp, refinement proof only uses VST

Verification Example - Gaussian elimination

- Standard algorithm in linear algebra to row reduce a matrix over a field
- transform using row swaps, scalar multiplication, and adding multiples of rows
- Can be used to calculate inverses, determinants, solve systems of linear equations
- In this application - used to create weight matrix and invert matrix in decoder

$$
\left(\begin{array}{llllll}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36}
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
1 & 0 & 0 & x_{1} & x_{2} & x_{3} \\
0 & 1 & 0 & x_{4} & x_{5} & x_{6} \\
0 & 0 & 1 & x_{7} & x_{8} & x_{9}
\end{array}\right)
$$

Verification Example - Gaussian elimination

1. Define functional model and prove correctness properties
```
Definition gaussian elim {m n} (A: 'M[F] (m, n)) :=
    all_lc_1 (gauss_all_steps A (insub 0%N) (insub 0%N)).
[A | I] }\underset{\mathrm{ elim }}{\mathrm{ Gaussian }}[I|\mp@subsup{A}{}{-1}
```

```
Definition find_invmx {n} (A: 'M[F]_n) :=
```

Definition find_invmx {n} (A: 'M[F]_n) :=
rsubmx (gaussian_elim (row_mx A 1%:M)).
rsubmx (gaussian_elim (row_mx A 1%:M)).
Lemma gaussian_finds_invmx: forall {n} (A: 'M[F]_(n, n)),
Lemma gaussian_finds_invmx: forall {n} (A: 'M[F]_(n, n)),
A \in unitmx ->
A \in unitmx ->
find invmx A = invmx A.

```
    find invmx A = invmx A.
```


Verification Example - Gaussian elimination

2. Define low-level functional model and prove equivalence

```
Definition lmatrix := list (list byte).
Definition gauss_restrict_list m n (mx: lmatrix) :=
all_lc_one_partial m n (gāuss_all_steps_list_partial m n mx m) (m-1).
Lemma gauss restrict list equiv: forall {m n} (mx: lmatrix) (Hmn: m <= n),
    wf_lmatrix mx m n ->
    lmàtrix to mx m n (gauss_restrict_list m n mx) =
    gaussian elim_restrict noop (lmatrix to mx m n mx) (le Z N Hmn)
```


Verification Example - Gaussian elimination

3. Define and prove VST spec using low-level functional model

```
int fec_matrix_transform (fec_sym * p, fec_sym i_max, fec_sym j_max)
```

```
Definition fec matrix transform spec :=
    DECLARE fec matrix_transform
    WITH gv: globals, m : Z, n : Z, mx : list (list byte), s : val, sh: share
    PRE [ tptr tuchar, tuchar, tuchar]
        PROP (0 < m <= n; n <= Byte.max_unsigned; wf lmatrix mx m n;
            strong_inv_list m n mx; writable_share sh)
        PARAMS (s; Vubyte\overline{e}}\mathrm{ (Byte.repr m); Vubyte
        GLOBALS (gv)
        SEP (FIELD_TABLES gv;
            data_at sh (tarray tuchar (m * n)) (map Vubyte (flatten_mx mx)) s)
    POST [tint]
        PROP()
        RETURN (Vint Int.zero)
        SEP(FIELD_TABLES gv;
            data_àt sh (tarray tuchar (m * n))
                (map Vubyte (flatten_mx (gauss_restrict_list m n mx))) s).
```

Lemma body_fec_matrix_transform : semax_body Vprog Gprog
f_fec_matrix_transform fec_matrix_transform_spec.

Verifying the Functional Model

- Mathcomp includes thousands of theorems about matrices, polynomials, rings and fields, etc
- We needed to prove results about constructing finite fields, computable polynomial division, Gaussian elimination, and properties of Vandermonde matrices
- 2 main challenges

1. proving that W_{2} in decoder is invertible (need sophisticated properties of Vandermonde matrices)
2. proving that modified Gaussian elimination is correct

Restricted Gaussian Elimination

- C Code does the following: on column r
- Multiply each row by inverse of $r^{\text {th }}$ element
- Subtract $r^{\text {th }}$ row from all other rows
- At end, scalar multiply to make all leading coefficients 1
- This is "restricted" Gaussian Elimination

$$
\left(\begin{array}{llll}
a & 0 & b & c \\
0 & d & e & f \\
0 & 0 & g & h \\
0 & 0 & i & j
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
\frac{a}{b} & 0 & 1 & \frac{c}{b} \\
0 & \frac{d}{e} & 1 & \frac{f}{e} \\
0 & 0 & 1 & \frac{h}{g} \\
0 & 0 & 1 & \frac{j}{i}
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
\frac{a}{b} & 0 & 0 & \frac{c}{b}-\frac{h}{g} \\
0 & \frac{d}{e} & 0 & \frac{f}{e}-\frac{h}{g} \\
0 & 0 & 1 & \frac{h}{g} \\
0 & 0 & 0 & \frac{j}{i}-\frac{h}{g}
\end{array}\right)
$$

- only works if all elements in $r^{\text {th }}$ column are nonzero!
- C code returns errors if this condition is violated
- "FEC: swap rows (not done yet!)"
- Suggests that authors were unclear why
 this was sufficient

Restricted Gaussian Elimination

When does the $r^{\text {th }}$ step succeed?

- Assume that first r-1 steps succeeded
- Upper left submatrix is diagonal with nonzeroes along diagonal
- All other entries in first r columns zero
- Want all $\mathrm{A}_{\mathrm{k}, \mathrm{r}}$!= 0

For $0 \leq k<r$,
$C_{k}^{r}=$ submatrix including rows $0 \ldots r-1$ and columns $0 \ldots r$ except k
C_{k}^{r} is invertible iff $A_{k, r} \neq 0$

Restricted Gaussian Elimination

When does the $r^{\text {th }}$ step succeed?

- Assume that first r-1 steps succeeded
- Upper left submatrix is diagonal with nonzeroes along diagonal
- All other entries in first r columns zero
- Want all $A_{k, r}!=0$

$$
\begin{aligned}
& \text { For } k \geq r \\
& R_{k}^{r}=\text { submatrix including columns } 0 \ldots r \\
& \text { and rows } 0 \ldots r-1 \text { and } k \\
& R_{k}^{r} \text { is invertible iff } A_{k, r} \neq 0
\end{aligned}
$$

Restricted Gaussian Elimination

$r^{t h}$ step succeeds iff C_{k}^{r} is invertible for $0 \leq k<r$ and R_{k}^{r} is invertible for $r \leq k<m$

```
Lemma gauss one step restrict equiv iff:
    forall {m n} (A: 'M[F]_(m, n)) (r: 'I_m) (Hmn: m <= n),
    gauss invar A r r ->
    gauss_one_step_restrict A r Hmn =
        Some((gauss_one_step A r (widen_ord Hmn r)).l) <->
    r strong inv A Hmn r.
```

We call this condition r-strongly invertible.

The whole algorithm succeeds iff A is $x-$ strongly invertible for $0 \leq x<m$.

```
Theorem gaussian_elim_equiv:
    forall {m n} (A: 'M[F]_(m, n)) (Hmn: m <= n) (Hm: 0 < m),
    strong inv A Hm Hmn <->
    gaussian_elim_restrict A Hmn = Some(gaussian_elim A)
```

- Strong invertibility is difficult to satisfy in general (requires m^{2} specific submatrices to be invertible)
- But the matrices in this application are strongly invertible (this is not trivial to show)
- Result - formal proof that simpler algorithm suffices in this instance
- Shows why this optimization/mistake is correct

Verifying the Implementation

- C code relatively challenging to verify
- Originally written over 20 years ago
- Code does clever and not-so-clever things
- Not written in ways particularly conducive to verification
- Documentation is very sparse
- Code is verified exactly as written, except that 1 macro was turned into function
- Found 1 bug - used undefined behavior

Verifying the Implementation - Challenges

- Matrices are represented many different ways in memory
- Pointer to elements, 2D global array, 2D local array (partially filled), unsigned char**
- Sometimes rows are reversed (for unknown reasons), sometimes not
- Need lemmas to convert between 1D arrays, 2D arrays, pointers, etc
- Decoder is long and complex - uses about 30 local variables, many nested loops
- VST becomes very slow and requires significant proof engineering to make verification feasible
- Uses (inconsistent) mix of array indexing and pointer arithmetic
- Requires lemmas and tactics to relate these memory addresses

```
Lemma data_at_2darray_concat : forall sh t n m (al : list (list (reptype t))) p,
    Zlength al = n ->
    Forall (fun l => Zlength l = m) al ->
    complete legal_cosu_type t = true ->
    data_at sh (tarray (tarray t m) n) al p
        = data at sh (tarray t (n * m)) (concat al) p.
```


Encoder VST Spec

Correctness Theorem (Low Level)

```
Theorem decoder list correct: forall k c h xh (data packets : list (list byte))
    (parities : list (option (list byte))) (stats : list byte) (lens : list Z) (parbound: Z),
    0<k <= fec_n - 1 - fec_max_h ->
0<c ->
0<h <= fec max h ->
xh <= h ->
xh <= k ->
0 <= parbound <= h ->
Zlength (filter (fun x => Z.eq_dec (Byte.signed x) 1) stats) = xh ->
Zlength (filter isSome (sublist 0 parbound parities)) = xh ->
Zlength parities = h ->
Zlength stats = k ->
Zlength packets = k ->
Zlength data = k ->
Zlength lens = k ->
(forall 1, 0 <= 1 < k >> Lnth i Lens = Llength (Znth i data)) -> The lens array is correct
```



```
    (foralL i, 0 <= i < K -> Byte.siqned (Znth i stats) <> 1%Z -> Znth i packets = Znth i data)
```



```
    parities vatid k c parities data -> recervernmarites, wafe produced by the encoder
    decoder_tist k c packets parities stats lens parbound = data. Decoder recovers original data
```


Bug in Implementation

- In Gaussian elimination, have the code shown in 2 separate places
- $\quad i$ ranges from 0 to $i _m a x, p$ is pointer to input matrix
- When $\mathrm{i}=0$, m points to $\mathrm{p}-1$
- The comparison $n>m$ is undefined behavior (in C11, even the definition of m is undefined behavior)
- VST will not let us prove this program correct without modifying it

```
q = (p + (i * j_max) + j_max - 1);
m=q-j_max;
for (n = q; n > m; n--) {
    //loop body
}
```


Related Work - Network Function Verification

VigNAT [Zaostrovnykh et al., SIGCOMM 2017]: formally verified NAT using symbolic execution and Verifast (semi-automated separation logic tool)

Vigor [Zaostrovnykh et al., SOSP 2019]: extend VigNAT to handle other network functions (load balancer, firewall, etc) and make verification fully automatic

Gravel [Zhang et al., NSDI 2020]: use symbolic execution and SMT solvers to verify middlebox-specific properties of Click elements in C++

All of these efforts are more automatic, but cannot handle FEC - allow only restricted uses of state, do not allow unbounded loops, cannot handle sophisticated mathematical reasoning

Related Work - Formalization of Coding Theory

In Coq [Affeldt et al., Journal of Automated Reasoning 2020 and others]: library of formalized coding theory, including Hamming, Reed-Solomon, BCH, and (acyclic) LDPC codes

In Lean [Hagiwara et al., ISITA 2015 and Kong et al., ISITA 2018]: formalized Hamming and Insertion-Deletion codes and results about Levenstein distance

In ACL2 [Nasser et al., Journal of Electronic Testing 2020]: verified Hamming and convolutional codes against a particular memory model

Conclusion and Future Work

Questions?

Thanks for listening!

