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Reliable Networking

● How can we ensure network defenses will protect against 
attackers?

● Attackers may have access to source code, ability to 
disrupt certain links

● Testing and static analysis not sufficient - need to know 
that defenses work for all possible inputs

● Larger project (Princeton, Cornell, Peraton Labs) - formally 
verify network components written in C and P4

● One particular defense - Forward Erasure Correction
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Error-Correcting Codes

● Transporting data across network can result in lost packets
● Goal of Forward Erasure Correction - add extra parity packets to allow lost 

packets to be recovered
● Do so with use of an error-correcting code (ECC)
● ECCs used in cases when retransmission is expensive or impossible (eg: 

networks, satellites, etc) and in data storage
● Lots of ECCs exist (Hamming, Reed-Solomon, Convolutional, BCH, etc), most 

based on fairly sophisticated math 
● Correctness is difficult to formally prove
● Erasure code - locations of missing packets are known
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Project Goals

● Formally verify real-world C implementation of FEC with Coq and the Verified 
Software Toolchain (VST)

● C code was originally written by Anthony McAuley of Bellcore in early ‘90s 
based on algorithm developed by Rabin [Journal of the ACM 1989], McAuley 
[SIGCOMM 90], and others

● Code has been in active use since
● Verification consists of two very different tasks:

1. Prove that the underlying algorithm is correct (using Coq and Mathematical Components)
2. Prove that the C code implements this algorithm correctly (using Coq and VST)

5



Coq and VST

● Coq is an interactive theorem prover using a 
higher-order dependently typed logic

● CompCert (Leroy) - optimizing C compiler verified 
in Coq

● Verified Software Toolchain (Appel) - a program 
logic for C programs (higher-order separation 
logic) and proof automation tools for verifying C 
code

● Proved sound wrt CompCert C
● Formal proof that any theorems proved with VST 

hold of the assembly code generated by 
CompCert 
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FEC Setup

● Append h extra packets to 
recover up to h lost packets

● Parity packets computed 
columnwise - we can think of 
each column as a vector

● Algorithm is based on 
Reed-Solomon coding (first 
invented in 1960s)
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Reed-Solomon Overview

● Interpret data as a polynomial over a finite 
field

○ ie: 

● Evaluate polynomial at k+h distinct points 
in the field

● Equivalently, multiply by Vandermonde 
matrix

● To make systematic, multiply by 
row-reduced Vandermonde matrix
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Correcting Erasures

● Simpler than full Reed-Solomon because we don’t need to find error locations
● Encoder - multiply input by some weight matrix W:

● What properties does W need to allow us to decode?
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Correcting Erasures

● First, suppose last h data packets are lost, all parities received
● Let D1 be received data, D2 be missing data, we have:
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So, we need (W2)-1 (arbitrary h  x h submatrix of W) to be invertible!



Correcting Erasures

● What if some parity packets are lost?
● Let xh be number of lost data packets; we must have received at least xh parities
● Suppose only the first xh parities were received (P1):
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Correcting Erasures

● General case is similar, but W1, W2, and 
P1 may not be contiguous

● We need W2 to be invertible, where W2 
is any xh x xh submatrix of W

● In other words, we need every submatrix 
up to size h x h to be invertible

● Row-reduced Vandermonde matrix has 
this (strong) property!
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Reed-Solomon Erasure (RSE) Algorithm

● Same as above, but using static weight matrix

● Initialization: create row-reduced Vandermonde matrix (weight matrix)
● Encoder - matrix multiplication (P=WD)
● Decoder - 2 matrix multiplications and a matrix inversion ((W2)-1(P1-W1D1))
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Verification Structure

● 2 very different tasks: prove algorithm is correct and prove C code implements 
algorithm

● Define functional model - purely functional version of algorithm written in 
Gallina using Mathematical Components library (collection of formalized 
mathematics)

● Can prove properties of functional model completely independent of C 
program - can be used for other implementations and serves as independent 
spec

● Prove only that C program implements functional model with VST
● Makes proofs shorter, more modular
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Verification Structure

● Actually need 2 functional models
● High-level uses uses Mathcomp matrix, 

ordinal, and polynomial types - abstract 
and dependently typed

● Low level uses concrete types - list(list 
byte) and similar

○ nontrivial translation

● Correctness properties only use 
Mathcomp, refinement proof only uses 
VST
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Functional Model
‘M[F]_(m, n), ‘I_n, {poly F}

Type translation and 
equivalence lemmas

(Mathcomp, VST 
functional base)

Low-Level 
Functional Model
list(list byte), Z, list bool

Refinement Proof
(VST)

C Code

Correctness Properties
(Mathcomp)



Verification Example - Gaussian elimination

● Standard algorithm in linear algebra to row reduce a matrix over a field
○ transform using row swaps, scalar multiplication, and adding multiples of rows

● Can be used to calculate inverses, determinants, solve systems of linear 
equations

● In this application - used to create weight matrix and invert matrix in decoder
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Verification Example - Gaussian elimination

1. Define functional model and prove 
correctness properties
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Functional Model
‘M[F]_(m, n), ‘I_n, {poly F}

Type translation and 
equivalence lemmas

(Mathcomp, VST 
functional base)

Low-Level 
Functional Model
list(list byte), Z, list bool

Refinement Proof
(VST)

C Code

Correctness Properties
(Mathcomp)



Verification Example - Gaussian elimination

2. Define low-level functional model and 
prove equivalence
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Functional Model
‘M[F]_(m, n), ‘I_n, {poly F}

Type translation and 
equivalence lemmas

(Mathcomp, VST 
functional base)

Low-Level 
Functional Model
list(list byte), Z, list bool

Refinement Proof
(VST)

C Code

Correctness Properties
(Mathcomp)



Verification Example - Gaussian elimination

3. Define and prove VST spec using low-level functional model
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Functional Model
‘M[F]_(m, n), ‘I_n, {poly F}

Type translation and 
equivalence lemmas

(Mathcomp, VST 
functional base)

Low-Level 
Functional Model
list(list byte), Z, list bool

Refinement Proof
(VST)

C Code

Correctness Properties
(Mathcomp)



Verifying the Functional Model

● Mathcomp includes thousands of theorems about matrices, polynomials, rings 
and fields, etc

● We needed to prove results about constructing finite fields, computable 
polynomial division, Gaussian elimination, and properties of Vandermonde 
matrices

● 2 main challenges 
1. proving that W2 in decoder is invertible (need sophisticated properties of 

Vandermonde matrices)
2. proving that modified Gaussian elimination is correct 
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Restricted Gaussian Elimination

● C Code does the following: on column r
○ Multiply each row by inverse of rth element
○ Subtract rth row from all other rows
○ At end, scalar multiply to make all leading 

coefficients 1

● This is “restricted” Gaussian Elimination 
- only works if all elements in rth column 
are nonzero!

● C code returns errors if this condition is 
violated

○ “FEC: swap rows (not done yet!)”

● Suggests that authors were unclear why 
this was sufficient
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Restricted Gaussian Elimination
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When does the rth step succeed?
● Assume that first r-1 steps succeeded
● Upper left submatrix is diagonal with 

nonzeroes along diagonal
● All other entries in first r columns zero
● Want all Ak,r != 0



Restricted Gaussian Elimination
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When does the rth step succeed?
● Assume that first r-1 steps succeeded
● Upper left submatrix is diagonal with 

nonzeroes along diagonal
● All other entries in first r columns zero
● Want all Ak,r != 0



Restricted Gaussian Elimination

● Strong invertibility is difficult to satisfy in general (requires m2 specific submatrices to 
be invertible)

● But the matrices in this application are strongly invertible (this is not trivial to show)
● Result - formal proof that simpler algorithm suffices in this instance
● Shows why this optimization/mistake is correct
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Verifying the Implementation

● C code relatively challenging to verify
○ Originally written over 20 years ago
○ Code does clever and not-so-clever things
○ Not written in ways particularly conducive to verification
○ Documentation is very sparse

● Code is verified exactly as written, except that 1 macro was turned into function
● Found 1 bug - used undefined behavior
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Verifying the Implementation - Challenges

● Matrices are represented many different ways in memory
○ Pointer to elements, 2D global array, 2D local array (partially filled), unsigned char**
○ Sometimes rows are reversed (for unknown reasons), sometimes not
○ Need lemmas to convert between 1D arrays, 2D arrays, pointers, etc

● Decoder is long and complex - uses about 30 local variables, many nested 
loops

○ VST becomes very slow and requires significant proof engineering to make verification feasible

● Uses (inconsistent) mix of array indexing and pointer arithmetic
○ Requires lemmas and tactics to relate these memory addresses
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Encoder VST Spec
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Precondition

Postcondition

Function param types

Coq 
propositions

Function input values

Function return type
Function return value

Separation logic predicates (heap)

C function name
Logical variables



Correctness Theorem (Low Level)

The received packets are correct
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Bounds and length info

The lens array is correct
All lengths are bounded by c

The received packets are correctParity packets have length cReceived parities were produced by the encoder
Decoder recovers original data



Bug in Implementation

● In Gaussian elimination, have the code 
shown in 2 separate places

● i ranges from 0 to i_max, p is pointer to 
input matrix

● When i=0, m points to p-1
● The comparison n > m is undefined 

behavior (in C11, even the definition of m is 
undefined behavior)

● VST will not let us prove this program 
correct without modifying it
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q = (p + (i * j_max) + j_max - 1);
m = q - j_max;
for (n = q; n > m; n--) {

//loop body

}



Related Work - Network Function Verification

VigNAT [Zaostrovnykh et al., SIGCOMM 2017]: formally verified NAT using symbolic 
execution and Verifast (semi-automated separation logic tool)

Vigor [Zaostrovnykh et al., SOSP 2019]: extend VigNAT to handle other network 
functions (load balancer, firewall, etc) and make verification fully automatic

Gravel [Zhang et al., NSDI 2020]: use symbolic execution and SMT solvers to verify 
middlebox-specific properties of Click elements in C++

All of these efforts are more automatic, but cannot handle FEC - allow only 
restricted uses of state, do not allow unbounded loops, cannot handle 
sophisticated mathematical reasoning
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Related Work - Formalization of Coding Theory

In Coq [Affeldt et al., Journal of Automated Reasoning 2020 and others]: library of 
formalized coding theory, including Hamming, Reed-Solomon, BCH, and (acyclic) 
LDPC codes

In Lean [Hagiwara et al., ISITA 2015 and Kong et al., ISITA 2018]: formalized 
Hamming and Insertion-Deletion codes and results about Levenstein distance

In ACL2 [Nasser et al., Journal of Electronic Testing 2020]: verified Hamming and 
convolutional codes against a particular memory model
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Conclusion and Future Work

● Core FEC code is fully verified
● Code is at 

https://github.com/verified-network-toolchain/Verified-
FEC

● Remaining - code that handles buffer and packet 
management (calls core FEC code)

● Possible future work - implement incremental FEC 
encoding and decoding at line rate on an FPGA, verify 
correctness according to same functional model
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Functional Model
‘M[F]_(m, n), ‘I_n, {poly F}

Low-Level 
Functional Model
list(list byte), Z, list bool

C Code FPGA

https://github.com/verified-network-toolchain/Verified-FEC
https://github.com/verified-network-toolchain/Verified-FEC


Questions?

Thanks for listening!
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