
Verified Forward Erasure
Correction with Coq and VST

Josh Cohen
1/13/21
Advisor: Andrew Appel

Plan

● Introduction
● Reed-Solomon Overview
● Reed-Solomon Erasure (RSE) Algorithm
● Verification Structure
● Verifying the Functional Model

○ Verifying Gaussian elimination
● Verifying the Implementation
● Results

○ Encoder VST Spec and Correctness Theorem
○ Bug found

● Related Work
● Conclusion and Future Work

2

Reliable Networking

● How can we ensure network defenses will protect against
attackers?

● Attackers may have access to source code, ability to
disrupt certain links

● Testing and static analysis not sufficient - need to know
that defenses work for all possible inputs

● Larger project (Princeton, Cornell, Peraton Labs) - formally
verify network components written in C and P4

● One particular defense - Forward Erasure Correction

3

Error-Correcting Codes

● Transporting data across network can result in lost packets
● Goal of Forward Erasure Correction - add extra parity packets to allow lost

packets to be recovered
● Do so with use of an error-correcting code (ECC)
● ECCs used in cases when retransmission is expensive or impossible (eg:

networks, satellites, etc) and in data storage
● Lots of ECCs exist (Hamming, Reed-Solomon, Convolutional, BCH, etc), most

based on fairly sophisticated math
● Correctness is difficult to formally prove
● Erasure code - locations of missing packets are known

4

Project Goals

● Formally verify real-world C implementation of FEC with Coq and the Verified
Software Toolchain (VST)

● C code was originally written by Anthony McAuley of Bellcore in early ‘90s
based on algorithm developed by Rabin [Journal of the ACM 1989], McAuley
[SIGCOMM 90], and others

● Code has been in active use since
● Verification consists of two very different tasks:

1. Prove that the underlying algorithm is correct (using Coq and Mathematical Components)
2. Prove that the C code implements this algorithm correctly (using Coq and VST)

5

Coq and VST

● Coq is an interactive theorem prover using a
higher-order dependently typed logic

● CompCert (Leroy) - optimizing C compiler verified
in Coq

● Verified Software Toolchain (Appel) - a program
logic for C programs (higher-order separation
logic) and proof automation tools for verifying C
code

● Proved sound wrt CompCert C
● Formal proof that any theorems proved with VST

hold of the assembly code generated by
CompCert

6

FEC Setup

● Append h extra packets to
recover up to h lost packets

● Parity packets computed
columnwise - we can think of
each column as a vector

● Algorithm is based on
Reed-Solomon coding (first
invented in 1960s)

7

Reed-Solomon Overview

● Interpret data as a polynomial over a finite
field

○ ie:

● Evaluate polynomial at k+h distinct points
in the field

● Equivalently, multiply by Vandermonde
matrix

● To make systematic, multiply by
row-reduced Vandermonde matrix

8

Correcting Erasures

● Simpler than full Reed-Solomon because we don’t need to find error locations
● Encoder - multiply input by some weight matrix W:

● What properties does W need to allow us to decode?

9

Correcting Erasures

● First, suppose last h data packets are lost, all parities received
● Let D1 be received data, D2 be missing data, we have:

10

So, we need (W2)-1 (arbitrary h x h submatrix of W) to be invertible!

Correcting Erasures

● What if some parity packets are lost?
● Let xh be number of lost data packets; we must have received at least xh parities
● Suppose only the first xh parities were received (P1):

11

Correcting Erasures

● General case is similar, but W1, W2, and
P1 may not be contiguous

● We need W2 to be invertible, where W2
is any xh x xh submatrix of W

● In other words, we need every submatrix
up to size h x h to be invertible

● Row-reduced Vandermonde matrix has
this (strong) property!

12

Reed-Solomon Erasure (RSE) Algorithm

● Same as above, but using static weight matrix

● Initialization: create row-reduced Vandermonde matrix (weight matrix)
● Encoder - matrix multiplication (P=WD)
● Decoder - 2 matrix multiplications and a matrix inversion ((W2)-1(P1-W1D1))

13

Verification Structure

● 2 very different tasks: prove algorithm is correct and prove C code implements
algorithm

● Define functional model - purely functional version of algorithm written in
Gallina using Mathematical Components library (collection of formalized
mathematics)

● Can prove properties of functional model completely independent of C
program - can be used for other implementations and serves as independent
spec

● Prove only that C program implements functional model with VST
● Makes proofs shorter, more modular

14

Verification Structure

● Actually need 2 functional models
● High-level uses uses Mathcomp matrix,

ordinal, and polynomial types - abstract
and dependently typed

● Low level uses concrete types - list(list
byte) and similar

○ nontrivial translation

● Correctness properties only use
Mathcomp, refinement proof only uses
VST

15

Functional Model
‘M[F]_(m, n), ‘I_n, {poly F}

Type translation and
equivalence lemmas

(Mathcomp, VST
functional base)

Low-Level
Functional Model
list(list byte), Z, list bool

Refinement Proof
(VST)

C Code

Correctness Properties
(Mathcomp)

Verification Example - Gaussian elimination

● Standard algorithm in linear algebra to row reduce a matrix over a field
○ transform using row swaps, scalar multiplication, and adding multiples of rows

● Can be used to calculate inverses, determinants, solve systems of linear
equations

● In this application - used to create weight matrix and invert matrix in decoder

16

Verification Example - Gaussian elimination

1. Define functional model and prove
correctness properties

17

Functional Model
‘M[F]_(m, n), ‘I_n, {poly F}

Type translation and
equivalence lemmas

(Mathcomp, VST
functional base)

Low-Level
Functional Model
list(list byte), Z, list bool

Refinement Proof
(VST)

C Code

Correctness Properties
(Mathcomp)

Verification Example - Gaussian elimination

2. Define low-level functional model and
prove equivalence

18

Functional Model
‘M[F]_(m, n), ‘I_n, {poly F}

Type translation and
equivalence lemmas

(Mathcomp, VST
functional base)

Low-Level
Functional Model
list(list byte), Z, list bool

Refinement Proof
(VST)

C Code

Correctness Properties
(Mathcomp)

Verification Example - Gaussian elimination

3. Define and prove VST spec using low-level functional model

19

Functional Model
‘M[F]_(m, n), ‘I_n, {poly F}

Type translation and
equivalence lemmas

(Mathcomp, VST
functional base)

Low-Level
Functional Model
list(list byte), Z, list bool

Refinement Proof
(VST)

C Code

Correctness Properties
(Mathcomp)

Verifying the Functional Model

● Mathcomp includes thousands of theorems about matrices, polynomials, rings
and fields, etc

● We needed to prove results about constructing finite fields, computable
polynomial division, Gaussian elimination, and properties of Vandermonde
matrices

● 2 main challenges
1. proving that W2 in decoder is invertible (need sophisticated properties of

Vandermonde matrices)
2. proving that modified Gaussian elimination is correct

20

Restricted Gaussian Elimination

● C Code does the following: on column r
○ Multiply each row by inverse of rth element
○ Subtract rth row from all other rows
○ At end, scalar multiply to make all leading

coefficients 1

● This is “restricted” Gaussian Elimination
- only works if all elements in rth column
are nonzero!

● C code returns errors if this condition is
violated

○ “FEC: swap rows (not done yet!)”

● Suggests that authors were unclear why
this was sufficient

21

Restricted Gaussian Elimination

22

When does the rth step succeed?
● Assume that first r-1 steps succeeded
● Upper left submatrix is diagonal with

nonzeroes along diagonal
● All other entries in first r columns zero
● Want all Ak,r != 0

Restricted Gaussian Elimination

23

When does the rth step succeed?
● Assume that first r-1 steps succeeded
● Upper left submatrix is diagonal with

nonzeroes along diagonal
● All other entries in first r columns zero
● Want all Ak,r != 0

Restricted Gaussian Elimination

● Strong invertibility is difficult to satisfy in general (requires m2 specific submatrices to
be invertible)

● But the matrices in this application are strongly invertible (this is not trivial to show)
● Result - formal proof that simpler algorithm suffices in this instance
● Shows why this optimization/mistake is correct

24

Verifying the Implementation

● C code relatively challenging to verify
○ Originally written over 20 years ago
○ Code does clever and not-so-clever things
○ Not written in ways particularly conducive to verification
○ Documentation is very sparse

● Code is verified exactly as written, except that 1 macro was turned into function
● Found 1 bug - used undefined behavior

25

Verifying the Implementation - Challenges

● Matrices are represented many different ways in memory
○ Pointer to elements, 2D global array, 2D local array (partially filled), unsigned char**
○ Sometimes rows are reversed (for unknown reasons), sometimes not
○ Need lemmas to convert between 1D arrays, 2D arrays, pointers, etc

● Decoder is long and complex - uses about 30 local variables, many nested
loops

○ VST becomes very slow and requires significant proof engineering to make verification feasible

● Uses (inconsistent) mix of array indexing and pointer arithmetic
○ Requires lemmas and tactics to relate these memory addresses

26

Encoder VST Spec

27

Precondition

Postcondition

Function param types

Coq
propositions

Function input values

Function return type
Function return value

Separation logic predicates (heap)

C function name
Logical variables

Correctness Theorem (Low Level)

The received packets are correct

28

Bounds and length info

The lens array is correct
All lengths are bounded by c

The received packets are correctParity packets have length cReceived parities were produced by the encoder
Decoder recovers original data

Bug in Implementation

● In Gaussian elimination, have the code
shown in 2 separate places

● i ranges from 0 to i_max, p is pointer to
input matrix

● When i=0, m points to p-1
● The comparison n > m is undefined

behavior (in C11, even the definition of m is
undefined behavior)

● VST will not let us prove this program
correct without modifying it

29

q = (p + (i * j_max) + j_max - 1);
m = q - j_max;
for (n = q; n > m; n--) {

//loop body

}

Related Work - Network Function Verification

VigNAT [Zaostrovnykh et al., SIGCOMM 2017]: formally verified NAT using symbolic
execution and Verifast (semi-automated separation logic tool)

Vigor [Zaostrovnykh et al., SOSP 2019]: extend VigNAT to handle other network
functions (load balancer, firewall, etc) and make verification fully automatic

Gravel [Zhang et al., NSDI 2020]: use symbolic execution and SMT solvers to verify
middlebox-specific properties of Click elements in C++

All of these efforts are more automatic, but cannot handle FEC - allow only
restricted uses of state, do not allow unbounded loops, cannot handle
sophisticated mathematical reasoning

30

Related Work - Formalization of Coding Theory

In Coq [Affeldt et al., Journal of Automated Reasoning 2020 and others]: library of
formalized coding theory, including Hamming, Reed-Solomon, BCH, and (acyclic)
LDPC codes

In Lean [Hagiwara et al., ISITA 2015 and Kong et al., ISITA 2018]: formalized
Hamming and Insertion-Deletion codes and results about Levenstein distance

In ACL2 [Nasser et al., Journal of Electronic Testing 2020]: verified Hamming and
convolutional codes against a particular memory model

31

Conclusion and Future Work

● Core FEC code is fully verified
● Code is at

https://github.com/verified-network-toolchain/Verified-
FEC

● Remaining - code that handles buffer and packet
management (calls core FEC code)

● Possible future work - implement incremental FEC
encoding and decoding at line rate on an FPGA, verify
correctness according to same functional model

32

Functional Model
‘M[F]_(m, n), ‘I_n, {poly F}

Low-Level
Functional Model
list(list byte), Z, list bool

C Code FPGA

https://github.com/verified-network-toolchain/Verified-FEC
https://github.com/verified-network-toolchain/Verified-FEC

Questions?

Thanks for listening!

33

