
Exploiting Synchrony and
Symmetry in Relational

Verification
Lauren Pick

1

Relational Verification

2

Relational Verification
Given:

• k (k >1) programs (renamed so that they have
independent sets of variables)

• a relational specification (relating the variables)
over the k programs

Prove that the relational specification holds for the
programs

3

Example: Equivalence Checking
Given programs P1, P2, that respectively have
inputs x1, x2 and
outputs y1, y2,
prove x1 = x2 ⇒ y1 = y2.

P1 P2

x1

y1

x2

y2
=?

=

4

Note: bold-faced variables are vectors

Hyperproperty Verification

• A hyperproperty is a relational property over k
copies of the same program

• The hyperproperty verification problem is the
relational verification problem where all k programs
are copies of the same program.

• E.g. noninterference, monotonicity, transitivity

5

Example: Noninterference
Security property for programs where variables have security types
{low, high}

Given two copies of the same program P1, P2, that respectively have
inputs (lx1 : low, hx1 : high), (lx2 : low, hx2 : high) and
outputs (ly1 : low, hy1 : high), (ly2 : low, hy2 : high),
prove lx1 = lx2 ⇒ ly1 = ly2.

P1 P2

lx1

ly1

lx2

ly2
=?

=
hx1 hx2

hy1 hy2

6

Example: Monotonicity
Given two copies of the same program P1, P2, that
respectively have

inputs x1, x2 , and

outputs y1, y2, prove

x1 ≤ x2 ⇒ y1 ≤ y2.

P1 P2

x1

y1

x2

y2
≤?

≤

7

Composition

[Barthe et al., 2004]
[Terauchi and Aiken, 2005]8

P1

…

pre

post

P2

Pk

Sequential: {pre} P1 ; … ; Pk {post}

• Pros: Can easily apply
standard verification
techniques

• Cons: Inflexible, can result in
more difficult verification
problems

Composition

[Barthe et al., 2004]
[Terauchi and Aiken, 2005]9

Parallel: {pre} P1 || … || Pk {post}

• Pros: Flexibility can let us
pick easier verification
subproblems

• Cons: Need to come up
with new techniques

P1 …

pre

post

P2 Pk

10

Two new techniques: Synchrony, Symmetry

Let’s consider the challenges that motivate them….

Synchrony and Symmetry

Challenge 1: Loops

11

Challenge 1: Loops

Invariants:

L1: x1 = x1init × i1! / i1init ∧ …

L2: x2 = x2init × i2! / i2init ∧ …
12

while (i1 < 10) { x1 *= i1; i1++; }

;

while (i2 < 10) { x2 *= i2; i2++; }

{ x1 < x2 ∧ i1 = i2 ∧ x1 > 0 ∧ i1 > 0 }

Nonlinear
{ x1 < x2 ∧ i1 = i2 ∧ x1 > 0 ∧ i1 > 0 }

L1

L2

Challenge 1: Loops

Consider the loops in parallel instead.

13

while (i1 < 10) { x1 *= i1; i1++; }

||

while (i2 < 10) { x2 *= i2; i2++; }

{ x1 < x2 ∧ i1 = i2 ∧ x1 > 0 ∧ i1 > 0 }

{ x1 < x2 ∧ i1 = i2 ∧ x1 > 0 ∧ i1 > 0 }

Challenge 1: Loops

(One) Relational Invariant: x1 < x2 ∧ i1 = i2 ∧ x1 > 0 ∧ i1 > 0

14

while (i1 < 10 && i2 < 10) {

x1 *= i1; i1++; x2 *= i2; i2++;

}

{ x1 < x2 ∧ i1 = i2 ∧ x1 > 0 ∧ i1 > 0 }

{ x1 < x2 ∧ i1 = i2 ∧ x1 > 0 ∧ i1 > 0 }

[Barthe et al., 2011]

lockstep
execution

Relational Verification

15

P1,1

…

pre

post

P1,3

P2,1

P2,2

Pk,1

Pk,2P1,2

P2,3 Pk,3

• Relating (i.e. synchronizing) intermediate points in programs
 to get intermediate relational specifications
 can result in easier verification problems

• In particular, synchronizing structurally similar parts of the different programs
 can yield simpler relational specifications

are structurally
similar

say that

s

[Barthe et al., 2011]
[Sousa and Dillig, 2016]
[De Angelis et al., 2016]

and more

Lockstep Loops

Loops that iterate the same number of times are able
to be executed in lockstep

[Barthe et al., 2011]
[Sousa and Dillig, 2016]16

Challenge 1: Loops

L1

x iterations

I1

L2

y iterations

I2

Lk-1

y iterations

Ik-1

Lk

y iterations

Ik

L3

x iterations

I3

…

x iterations

L3L1

I1,3,…

y iterations

Lk-1L2… Lk

I2,…,k-1,k

…

Handling each loop
individually can require the

generation of potentially
complicated loop

invariants.

How can we maximize the
number of loops over

which we can compute
simpler relational

invariants?

17

Synchrony

Partition a set of loops into maximal sets of loops that
can be executed in lockstep

18

Synchrony
We assume we are given a relational invariant I.

Note: You can use any of several existing techniques for invariant generation.
The implementation (described later) uses a guess-and-check invariant
generator.

L1 L2 Lk…

L1 L2 … LkI I

c1 c2 ck

19

Synchrony
When can we execute a set of loops in lockstep?

L1 L2 Lk…

[Sousa and Dillig, 2016]

c1 c2 ck

If any loop has terminated, all loops must have terminated.

I ∧ (¬c1 ∨ ¬c2 ∨…∨ ¬ck) ⇒ (¬c1 ∧ ¬c2 ∧… ∧ ¬ck)

20

(check)

Maximal Lockstep Loop
Detection

¬(I ∧ (¬c1 ∨ ¬c2 ∨…∨ ¬ck) ⇒ (¬c1 ∧ ¬c2 ∧ … ∧ ¬ck))

• If unsatisfiable, all loops can be executed in
lockstep. (Done!)

• If satisfiable, then what?

• Use model to partition the set of loops into
those that have terminated (¬ci holds in the
model) and those that have not (ci holds in the
model)

• Recurse on the two sets….
21

(partition)

(recurse)

(check)

Maximal Lockstep Loop
Example

¬(I ∧ (¬c1 ∨ ¬c2 ∨…∨ ¬c5) ⇒ (¬c1 ∧ ¬c2 ∧ … ∧ ¬c5))

22

L1

x iterations

L2

y iterations

L4 L5L3

x iterations z iterations y iterations

c1 c2 c3 c4 c5

SAT: c1, c2, c3, ¬c4, and c5 hold in model

L1

x iterations

L2

y iterations

L4L5L3

x iterations z iterationsy iterations

c1 c2 c3 c4c5

(check)

(partition)

Maximal Lockstep Loop
Example

¬(I ∧ (¬c1 ∨ ¬c2 ∨ ¬c3 ∨ ¬c5) ⇒ (¬c1 ∧ ¬c2 ∧ ¬c3 ∧ ¬c5))

23

SAT: c1, ¬c2, c3, ¬c5 hold in model

L4

z iterations

c4

L1

x iterations

L2

y iterations

L5L3

x iterations y iterations

c1 c2 c3 c5

L1

x iterations

L3

x iterations

L5L2

y iterations y iterations

c1 c3 c2 c5

(recurse)

(check)

(partition)

Done!

Summary: Maximal
Lockstep Loop Detection

Step 1. Check if current set can be executed in
lockstep

Step 2. Partition according to model (if necessary)

Step 3. Recurse

24

Challenge 2:
Redundancy

25

Challenge 2: Redundancy

26

if (x1 > y1) then P1 else Q1

||

if (x2 > y2) then P2 else Q2

{ x1 ≠ x2 }

{ x1 ≠ x2 }

Challenge 2: Redundancy

27

if (x1 > y1) then P1 else Q1 || if (x2 > y2) then P2 else Q2
{ x1 ≠ x2 }

{ x1 ≠ x2 }

P1 || P2

{ x1 ≠ x2 ∧
x1 > y1 ∧
x2 > y2}

{ x1 ≠ x2 }
Q1 || P2

{ x1 ≠ x2 ∧
x1 ≤ y1 ∧
x2 > y2}

{ x1 ≠ x2 }
P1 || Q2

{ x1 ≠ x2 ∧
x1 > y1 ∧
x2 ≤ y2}

{ x1 ≠ x2 }
Q1 || Q2

{ x1 ≠ x2 ∧
x1 ≤ y1 ∧
x2 ≤ y2}

{ x1 ≠ x2 }
RVP1 RVP2 RVP3 RVP4

RVP - Relational Verification Problem

Challenge 2: Redundancy

P1,1

P1,2 P1,3

pre

post

Pk,1

Pk,2 Pk,3

…
Maybe for the given relational

specification,

P1,2 Pk,3 and P1,3 Pk,2

are symmetric over indices.

… …

How can we identify and use symmetries
in programs and

in relational specifications
to avoid solving redundant verification problems?

28

Symmetric Relational Verification
Problems (RVPs)

29

if (x1 > y1) then P1 else Q1

||

if (x2 > y2) then P2 else Q2

{ x1 ≠ x2 }

{ x1 ≠ x2 }

If you permute indices, you get the same problem.

Need a permutation π of indices that is a symmetry
of the formulas (pre- and postconditions) and
of the programs

if (x2 > y2) then P2 else Q2

||

if (x1 > y1) then P1 else Q1

{ x2 ≠ x1 }

{ x2 ≠ x1 }

{1 ↦2, 2 ↦ 1}

(can e.g. check if at same program point for hyperproperties)

Leveraging Symmetry to
Reduce Redundancies

• Find symmetries in formulas (permutation π)

• Find symmetric RVPs (make sure programs are
symmetric, i.e. π is a symmetry of the programs
also)

• Prune (via symmetry-breaking, lifted from SAT)

30

Leveraging Symmetry to
Reduce Redundancies

• Find symmetries in formulas (permutation π)

• Find symmetric RVPs (make sure programs are
symmetric, i.e. π is a symmetry of the programs
also)

• Prune (via symmetry-breaking, lifted from SAT)

31

Finding Symmetries of a
Formula

• Prior work for SAT formulas: based on finding
automorphisms of a colored graph

• Our work: Lift SAT techniques to first-order
theories (with equality, linear integer arithmetic)

32
[Aloul et al., 2006]

[Crawford et al., 2005]

Example: Finding
Symmetries of a Formula

Step 1. Canonicalize

𝜙 = x1 ≤ x2 ∧ x3 ≤ x4

to CNF

𝜙’ = ((x1 < x2) ∨ (x1 = x2)) ∧ ((x3 < x4) ∨ (x3 = x4))

33
[Aloul et al., 2006]

[Crawford et al., 2005]

Example: Finding
Symmetries of a Formula

Step 2. Create colored graph from AST

𝜙’ = ((x1 < x2) ∨ (x1 = x2)) ∧ ((x3 < x4) ∨ (x3 = x4))

34

Example: Finding
Symmetries of a Formula

Step 2. Create colored graph from ASTs

Clauses: {(x1 < x2) ∨ (x1 = x2), (x3 < x4) ∨ (x3 = x4)}

x1 x2

=
∨

(x1,L) (x2,R)

<

x3 x4

=
∨

(x3,L) (x4,R)

<

AST AST

35

Example: Finding
Symmetries of a Formula

Step 2. Create graph from ASTs

x1 x2

=
∨

(x1,L) (x2,R)

<

x3 x4

=
∨

(x3,L) (x4,R)

<

Id Id Id Id
1 2 3 4

36

Example: Finding
Symmetries of a Formula

Step 2. Create graph from ASTs

x x2

=
∨

(x,L) (x2,R)

<

x3 x4

=
∨

(x3,L) (x4,R)

<

Id Id Id Id
1 2 3 4

37

Example: Finding
Symmetries of a Formula

Step 2. Create graph from ASTs

x(x,R) x

=
∨

(x,L)

<

x3 x4

=
∨

(x3,L) (x4,R)

<

Id Id Id Id
1 2 3 4

38

Example: Finding
Symmetries of a Formula

Step 2. Create graph from ASTs

x(x,L)x

=
∨

(x,L)

<

x4

=
∨

(x4,R)

<

Id Id Id Id
1 2 3 4

x(x,R)

39

Example: Finding
Symmetries of a Formula

Step 2. Create graph from ASTs

x(x,R) x(x,L)x

=
∨

(x,L)

< =
∨

<

Id Id Id Id
1 2 3 4

x(x,R)

40

Example: Finding
Symmetries of a Formula

Step 3. Find graph automorphisms

1 2 3 4

π = {1 ↦ 3, 2 ↦ 4, 3 ↦ 1, 4 ↦ 2}

x(x,R) x(x,L)x

=
∨

(x,L)

< =
∨

<

Id Id Id Id

x(x,R)

41

Example: Finding
Symmetries of a Formula

π = {1 ↦ 3, 2 ↦ 4, 3 ↦ 1, 4 ↦ 2}

42

𝜙 = x1 ≤ x2 ∧ x3 ≤ x4

π(𝜙) = x3 ≤ x4 ∧ x1 ≤ x2

𝜙 ⇔ π(𝜙)

Summary: Finding Symmetries
of a Formula Automatically

Step 1. Canonicalize

Step 2. Create graph from AST

Step 3. Find graph automorphisms

43

How to apply symmetry?
• Aligning conditionals
• So far we have considered trying to align loops in a particular way
• We also would like to align conditional statements in order to give

us more opportunities to exploit symmetry

44

P1,1

P1,2 P1,3

P1,0

P2,1

P2,2 P2,3

P2,0 P1,2 P2,3

P2,2 P1,3

P1,2 P2,2

P2,3P1,3

prune?

Aligning Conditionals:
Example

45

R1; if (x1 > y1) then P1 else Q1

||

S2; if (x2 > y2) then P2 else Q2

{ x1 ≠ x2 }

{ x1 ≠ x2 }

{ post(post(x1 ≠ x2, R1), S2) }

if (x1 > y1) then P1 else Q1

||

if (x2 > y2) then P2 else Q2

Instantiation:
Hyperproperty

Verification

46

Instantiation: Hyperproperty
Verification

47

5 Instantiation of Strategies in Forward Analysis

We now describe an instantiation of our proposed strategies in a verification al-
gorithm based on forward analysis using a strongest-postcondition computation.
Other instantiations, e.g., on top of a Horn solver based on Property-Directed
Reachability [24] are possible, but outside the scope of this work.

1: procedure Verify(pre,Current , Ifs,Loops, post)
2: while Current 6= ? do
3: if ProcessStatement(pre, Pi, Ifs,Loops, post) = safe then return safe

4: if Loops 6= ? then HandleLoops(pre,Loops, post)
5: else if Ifs 6= ? then HandleIfs(pre, Ifs,Loops, post)
6: else return unsafe

Given an RVP in the form of a Hoare triple {Pre} P1|| · · · ||Pk {Post}, where ||
denotes parallel composition, the top-level Verify procedure takes as input the
relational specification pre = Pre and post = Post , the set of input programs
Current = {P1, . . . , Pk}, and empty sets Loops and Ifs. It uses a strongest-
postcondition computation to compute the next Hoare triple at each step until
it can conclude the validity of the original Hoare triple.

Synchronization. Throughout verification, the algorithm maintains three dis-
joint sets of programs: one for programs that are currently being processed
(Current), one for programs that have been processed up until a loop (Loops),
and one for programs that have been processed up until a conditional statement
(Ifs). The algorithm processes statements in each program independently, with
ProcessStatement choosing an arbitrary interleaving of statements from the
programs in Current . When the algorithm encounters the end of a program in
its call to ProcessStatement, it removes this program from the Current set.
At this point, the algorithm returns safe if the current Hoare triple is proven
valid. When a program has reached a point of control-flow divergence and is
processed by ProcessStatement, it is removed from Current and added to
the appropriate set (Loops or Ifs).

Handling Loops. Once all programs are in the Loops or Ifs sets (i.e. Current =
?), the algorithm handles the programs in the Loops set if it is nonempty. Han-

dleLoops behaves like CheckLockstep but computes postconditions where
possible; when a set of loops are able to be executed in lockstep, HandleLoops

computes their postconditions before placing the programs into the Terminated

set. After all loops have been placed in the Terminated set and a new precondi-
tion pre

0 has been computed, rather than returning Terminated , HandleLoops

invokes Verify(pre 0,Terminated , Ifs,?, post).

Handling Conditionals. When Current = Loops = ?, Verify handles condi-
tional statements. HandleIfs exploits symmetries by using the All-SAT query
with Lex-Leader SBPs as described in Sect. 4 and calls Verify on each gener-
ated verification problem.

11

Algorithm based on forward analysis where we maintain
Hoare triples.

Maintain sets of program copies that begin with
conditionals (Ifs) and loops (Loops).

Instantiation: Hyperproperty
Verification

48

5 Instantiation of Strategies in Forward Analysis

We now describe an instantiation of our proposed strategies in a verification al-
gorithm based on forward analysis using a strongest-postcondition computation.
Other instantiations, e.g., on top of a Horn solver based on Property-Directed
Reachability [24] are possible, but outside the scope of this work.

1: procedure Verify(pre,Current , Ifs,Loops, post)
2: while Current 6= ? do
3: if ProcessStatement(pre, Pi, Ifs,Loops, post) = safe then return safe

4: if Loops 6= ? then HandleLoops(pre,Loops, post)
5: else if Ifs 6= ? then HandleIfs(pre, Ifs,Loops, post)
6: else return unsafe

Given an RVP in the form of a Hoare triple {Pre} P1|| · · · ||Pk {Post}, where ||
denotes parallel composition, the top-level Verify procedure takes as input the
relational specification pre = Pre and post = Post , the set of input programs
Current = {P1, . . . , Pk}, and empty sets Loops and Ifs. It uses a strongest-
postcondition computation to compute the next Hoare triple at each step until
it can conclude the validity of the original Hoare triple.

Synchronization. Throughout verification, the algorithm maintains three dis-
joint sets of programs: one for programs that are currently being processed
(Current), one for programs that have been processed up until a loop (Loops),
and one for programs that have been processed up until a conditional statement
(Ifs). The algorithm processes statements in each program independently, with
ProcessStatement choosing an arbitrary interleaving of statements from the
programs in Current . When the algorithm encounters the end of a program in
its call to ProcessStatement, it removes this program from the Current set.
At this point, the algorithm returns safe if the current Hoare triple is proven
valid. When a program has reached a point of control-flow divergence and is
processed by ProcessStatement, it is removed from Current and added to
the appropriate set (Loops or Ifs).

Handling Loops. Once all programs are in the Loops or Ifs sets (i.e. Current =
?), the algorithm handles the programs in the Loops set if it is nonempty. Han-

dleLoops behaves like CheckLockstep but computes postconditions where
possible; when a set of loops are able to be executed in lockstep, HandleLoops

computes their postconditions before placing the programs into the Terminated

set. After all loops have been placed in the Terminated set and a new precondi-
tion pre

0 has been computed, rather than returning Terminated , HandleLoops

invokes Verify(pre 0,Terminated , Ifs,?, post).

Handling Conditionals. When Current = Loops = ?, Verify handles condi-
tional statements. HandleIfs exploits symmetries by using the All-SAT query
with Lex-Leader SBPs as described in Sect. 4 and calls Verify on each gener-
ated verification problem.

11

P1,1

P1,0

P1,2

P1,3 P1,4

P2,1

P2,0

P2,2

P2,3 P2,4

Current Ifs Loops

P3,1

P3,0

P3,2

P3,3 P3,4

Instantiation: Hyperproperty
Verification

49

5 Instantiation of Strategies in Forward Analysis

We now describe an instantiation of our proposed strategies in a verification al-
gorithm based on forward analysis using a strongest-postcondition computation.
Other instantiations, e.g., on top of a Horn solver based on Property-Directed
Reachability [24] are possible, but outside the scope of this work.

1: procedure Verify(pre,Current , Ifs,Loops, post)
2: while Current 6= ? do
3: if ProcessStatement(pre, Pi, Ifs,Loops, post) = safe then return safe

4: if Loops 6= ? then HandleLoops(pre,Loops, post)
5: else if Ifs 6= ? then HandleIfs(pre, Ifs,Loops, post)
6: else return unsafe

Given an RVP in the form of a Hoare triple {Pre} P1|| · · · ||Pk {Post}, where ||
denotes parallel composition, the top-level Verify procedure takes as input the
relational specification pre = Pre and post = Post , the set of input programs
Current = {P1, . . . , Pk}, and empty sets Loops and Ifs. It uses a strongest-
postcondition computation to compute the next Hoare triple at each step until
it can conclude the validity of the original Hoare triple.

Synchronization. Throughout verification, the algorithm maintains three dis-
joint sets of programs: one for programs that are currently being processed
(Current), one for programs that have been processed up until a loop (Loops),
and one for programs that have been processed up until a conditional statement
(Ifs). The algorithm processes statements in each program independently, with
ProcessStatement choosing an arbitrary interleaving of statements from the
programs in Current . When the algorithm encounters the end of a program in
its call to ProcessStatement, it removes this program from the Current set.
At this point, the algorithm returns safe if the current Hoare triple is proven
valid. When a program has reached a point of control-flow divergence and is
processed by ProcessStatement, it is removed from Current and added to
the appropriate set (Loops or Ifs).

Handling Loops. Once all programs are in the Loops or Ifs sets (i.e. Current =
?), the algorithm handles the programs in the Loops set if it is nonempty. Han-

dleLoops behaves like CheckLockstep but computes postconditions where
possible; when a set of loops are able to be executed in lockstep, HandleLoops

computes their postconditions before placing the programs into the Terminated

set. After all loops have been placed in the Terminated set and a new precondi-
tion pre

0 has been computed, rather than returning Terminated , HandleLoops

invokes Verify(pre 0,Terminated , Ifs,?, post).

Handling Conditionals. When Current = Loops = ?, Verify handles condi-
tional statements. HandleIfs exploits symmetries by using the All-SAT query
with Lex-Leader SBPs as described in Sect. 4 and calls Verify on each gener-
ated verification problem.

11

P1,1

P1,2

P1,3 P1,4

P2,1

P2,2

P2,3 P2,4

Ifs Loops

P3,1

P3,2

P3,3 P3,4

Current

Instantiation: Hyperproperty
Verification

50

5 Instantiation of Strategies in Forward Analysis

We now describe an instantiation of our proposed strategies in a verification al-
gorithm based on forward analysis using a strongest-postcondition computation.
Other instantiations, e.g., on top of a Horn solver based on Property-Directed
Reachability [24] are possible, but outside the scope of this work.

1: procedure Verify(pre,Current , Ifs,Loops, post)
2: while Current 6= ? do
3: if ProcessStatement(pre, Pi, Ifs,Loops, post) = safe then return safe

4: if Loops 6= ? then HandleLoops(pre,Loops, post)
5: else if Ifs 6= ? then HandleIfs(pre, Ifs,Loops, post)
6: else return unsafe

Given an RVP in the form of a Hoare triple {Pre} P1|| · · · ||Pk {Post}, where ||
denotes parallel composition, the top-level Verify procedure takes as input the
relational specification pre = Pre and post = Post , the set of input programs
Current = {P1, . . . , Pk}, and empty sets Loops and Ifs. It uses a strongest-
postcondition computation to compute the next Hoare triple at each step until
it can conclude the validity of the original Hoare triple.

Synchronization. Throughout verification, the algorithm maintains three dis-
joint sets of programs: one for programs that are currently being processed
(Current), one for programs that have been processed up until a loop (Loops),
and one for programs that have been processed up until a conditional statement
(Ifs). The algorithm processes statements in each program independently, with
ProcessStatement choosing an arbitrary interleaving of statements from the
programs in Current . When the algorithm encounters the end of a program in
its call to ProcessStatement, it removes this program from the Current set.
At this point, the algorithm returns safe if the current Hoare triple is proven
valid. When a program has reached a point of control-flow divergence and is
processed by ProcessStatement, it is removed from Current and added to
the appropriate set (Loops or Ifs).

Handling Loops. Once all programs are in the Loops or Ifs sets (i.e. Current =
?), the algorithm handles the programs in the Loops set if it is nonempty. Han-

dleLoops behaves like CheckLockstep but computes postconditions where
possible; when a set of loops are able to be executed in lockstep, HandleLoops

computes their postconditions before placing the programs into the Terminated

set. After all loops have been placed in the Terminated set and a new precondi-
tion pre

0 has been computed, rather than returning Terminated , HandleLoops

invokes Verify(pre 0,Terminated , Ifs,?, post).

Handling Conditionals. When Current = Loops = ?, Verify handles condi-
tional statements. HandleIfs exploits symmetries by using the All-SAT query
with Lex-Leader SBPs as described in Sect. 4 and calls Verify on each gener-
ated verification problem.

11

P1,1

P1,2

P1,3 P1,4

P2,1

P2,2

P2,3 P2,4

Loops

P3,1

P3,2

P3,3 P3,4

Current Ifs

handle maximally in lockstep

Instantiation: Hyperproperty
Verification

51

5 Instantiation of Strategies in Forward Analysis

We now describe an instantiation of our proposed strategies in a verification al-
gorithm based on forward analysis using a strongest-postcondition computation.
Other instantiations, e.g., on top of a Horn solver based on Property-Directed
Reachability [24] are possible, but outside the scope of this work.

1: procedure Verify(pre,Current , Ifs,Loops, post)
2: while Current 6= ? do
3: if ProcessStatement(pre, Pi, Ifs,Loops, post) = safe then return safe

4: if Loops 6= ? then HandleLoops(pre,Loops, post)
5: else if Ifs 6= ? then HandleIfs(pre, Ifs,Loops, post)
6: else return unsafe

Given an RVP in the form of a Hoare triple {Pre} P1|| · · · ||Pk {Post}, where ||
denotes parallel composition, the top-level Verify procedure takes as input the
relational specification pre = Pre and post = Post , the set of input programs
Current = {P1, . . . , Pk}, and empty sets Loops and Ifs. It uses a strongest-
postcondition computation to compute the next Hoare triple at each step until
it can conclude the validity of the original Hoare triple.

Synchronization. Throughout verification, the algorithm maintains three dis-
joint sets of programs: one for programs that are currently being processed
(Current), one for programs that have been processed up until a loop (Loops),
and one for programs that have been processed up until a conditional statement
(Ifs). The algorithm processes statements in each program independently, with
ProcessStatement choosing an arbitrary interleaving of statements from the
programs in Current . When the algorithm encounters the end of a program in
its call to ProcessStatement, it removes this program from the Current set.
At this point, the algorithm returns safe if the current Hoare triple is proven
valid. When a program has reached a point of control-flow divergence and is
processed by ProcessStatement, it is removed from Current and added to
the appropriate set (Loops or Ifs).

Handling Loops. Once all programs are in the Loops or Ifs sets (i.e. Current =
?), the algorithm handles the programs in the Loops set if it is nonempty. Han-

dleLoops behaves like CheckLockstep but computes postconditions where
possible; when a set of loops are able to be executed in lockstep, HandleLoops

computes their postconditions before placing the programs into the Terminated

set. After all loops have been placed in the Terminated set and a new precondi-
tion pre

0 has been computed, rather than returning Terminated , HandleLoops

invokes Verify(pre 0,Terminated , Ifs,?, post).

Handling Conditionals. When Current = Loops = ?, Verify handles condi-
tional statements. HandleIfs exploits symmetries by using the All-SAT query
with Lex-Leader SBPs as described in Sect. 4 and calls Verify on each gener-
ated verification problem.

11

P1,2

P1,3 P1,4

P2,2

P2,3 P2,4

Current Ifs Loops

P3,2

P3,3 P3,4

Instantiation: Hyperproperty
Verification

52

5 Instantiation of Strategies in Forward Analysis

We now describe an instantiation of our proposed strategies in a verification al-
gorithm based on forward analysis using a strongest-postcondition computation.
Other instantiations, e.g., on top of a Horn solver based on Property-Directed
Reachability [24] are possible, but outside the scope of this work.

1: procedure Verify(pre,Current , Ifs,Loops, post)
2: while Current 6= ? do
3: if ProcessStatement(pre, Pi, Ifs,Loops, post) = safe then return safe

4: if Loops 6= ? then HandleLoops(pre,Loops, post)
5: else if Ifs 6= ? then HandleIfs(pre, Ifs,Loops, post)
6: else return unsafe

Given an RVP in the form of a Hoare triple {Pre} P1|| · · · ||Pk {Post}, where ||
denotes parallel composition, the top-level Verify procedure takes as input the
relational specification pre = Pre and post = Post , the set of input programs
Current = {P1, . . . , Pk}, and empty sets Loops and Ifs. It uses a strongest-
postcondition computation to compute the next Hoare triple at each step until
it can conclude the validity of the original Hoare triple.

Synchronization. Throughout verification, the algorithm maintains three dis-
joint sets of programs: one for programs that are currently being processed
(Current), one for programs that have been processed up until a loop (Loops),
and one for programs that have been processed up until a conditional statement
(Ifs). The algorithm processes statements in each program independently, with
ProcessStatement choosing an arbitrary interleaving of statements from the
programs in Current . When the algorithm encounters the end of a program in
its call to ProcessStatement, it removes this program from the Current set.
At this point, the algorithm returns safe if the current Hoare triple is proven
valid. When a program has reached a point of control-flow divergence and is
processed by ProcessStatement, it is removed from Current and added to
the appropriate set (Loops or Ifs).

Handling Loops. Once all programs are in the Loops or Ifs sets (i.e. Current =
?), the algorithm handles the programs in the Loops set if it is nonempty. Han-

dleLoops behaves like CheckLockstep but computes postconditions where
possible; when a set of loops are able to be executed in lockstep, HandleLoops

computes their postconditions before placing the programs into the Terminated

set. After all loops have been placed in the Terminated set and a new precondi-
tion pre

0 has been computed, rather than returning Terminated , HandleLoops

invokes Verify(pre 0,Terminated , Ifs,?, post).

Handling Conditionals. When Current = Loops = ?, Verify handles condi-
tional statements. HandleIfs exploits symmetries by using the All-SAT query
with Lex-Leader SBPs as described in Sect. 4 and calls Verify on each gener-
ated verification problem.

11

P1,2

P1,3 P1,4

P2,2

P2,3 P2,4

Current Ifs

P3,2

P3,3 P3,4

Loops

avoid generating redundant RVPs

Evaluation
Prototype

• Built on top of Descartes [Sousa and Dillig, 2016]

• Two variants:

• Syn - uses synchrony

• Synonym - uses synchrony and symmetry

Benchmarks

• 33 small Stackoverflow Java benchmarks (21-107 LOC) from original
Descartes evaluation [Sousa and Dillig, 2016]

• 16 larger, modified Stackoverflow Java benchmarks (62-301 LOC)

All experiments conducted on a MacBook Pro with a 2.7GHz Intel Core i5
processor and 8GB RAM.

53

Example Benchmark
public class Match implements Comparator<Match>{
 int score;
 int seq1start;
 int seq2start;

 @Override
 public int compare(Match o1, Match o2) {
 // first compare scores
 if (o1.score > o2.score) return -1; /* higher score for o1 -> o1 */
 if (o1.score < o2.score) return 1; /* higher score for o2 -> o2 */

 // scores are equal, go on with the position
 if ((o1.seq1start + o1.seq2start) < (o2.seq1start+o2.seq2start)
 return -1; /* o1 farther left */
 if ((o1.seq1start + o1.seq2start) > (o2.seq1start+o2.seq2start))
 return 1; /* o2 farther left */

 // they're equally good
 return 0;
 }
}

54

Results: Small Stackoverflow
Benchmarks

P1: ∀x,y. sgn(compare(x,y)) = -sgn(compare(y,x))

55

0.1

0.1

Time (s) (Descartes)

T
im

e
(s
)
(S

y
n
)

Prop. P1 Times

10 100 1,000

10

100

1,000

HTC (Descartes)

H
T
C

(
S
y
n
)

Prop. P1 Hoare Triple Counts

0.1

0.1

Time (s) (Descartes)

T
im

e
(s
)
(S

y
n
o
n
y
m
)

Prop. P1 Times

10 100 1,000

10

100

1,000

HTC (Descartes)

H
T
C

(
S
y
n
o
n
y
m
)

Prop. P1 Hoare Triple Counts

HTC - Hoare Triple Count

Syn
vs.

Descartes

Times HTCs

Synonym
vs.

Descartes

Results: Small Stackoverflow
Benchmarks

P2: ∀x,y,z. (compare(x,y) > 0 ∧ compare(y,z) > 0) ⇒ compare(x,z) > 0

56

Times HTCs

0.1 1

0.1

1

Time (s) (Descartes)

T
im

e
(s
)
(S

y
n
)

Prop. P2 Times

0.1 1

0.1

1

Time (s) (Descartes)

T
im

e
(s
)
(S

y
n
o
n
y
m
)

Prop. P2 Times

10 100 1,000

10

100

1,000

HTC (Descartes)

H
T
C

(
S
y
n
)

Prop. P2 Hoare Triple Counts

10 100 1,000

10

100

1,000

HTC (Descartes)

H
T
C

(
S
y
n
o
n
y
m
)

Prop. P2 Hoare Triple Counts

Syn
vs.

Descartes

Synonym
vs.

Descartes

Results: Small Stackoverflow
Benchmarks

P3: ∀x,y,z. compare(x,y) = 0 ⇒ (sgn(compare(x,z)) = sgn(compare(y,z)))

57

Times HTCs

Syn
vs.

Descartes

Synonym
vs.

Descartes

0.01 0.1 1 10

0.01

0.1

1

10

Time (s) (Descartes)

T
im

e
(s
)
(S

y
n
)

Prop. P3 Times

0.01 0.1 1 10

0.01

0.1

1

10

Time (s) (Descartes)

T
im

e
(s
)
(S

y
n
o
n
y
m
)

Prop. P3 Times

10 100 1,000

10

100

1,000

HTC (Descartes)

H
T
C

(
S
y
n
)

Prop. P3 Hoare Triple Counts

10 100 1,000

10

100

1,000

HTC (Descartes)

H
T
C

(
S
y
n
o
n
y
m
)

Prop. P3 Hoare Triple Counts

Results: Modified Benchmarks
P13: ∀x,y,z.pick(x,y,z) = pick(y,x,z)

58

Times HTCs

Syn
vs.

Descartes

Synonym
vs.

Descartes

0.1 1 10 100

0.1

1

10

100

Time (s) (Descartes)

T
im

e
(s
)
(S

y
n
)

Prop. P13 Times

10 1,000 100,000

10

1,000

100,000

HTC (Descartes)

H
T
C

(
S
y
n
)

Prop. P13 Hoare Triple Counts

0.1 1 10 100

0.1

1

10

100

Time (s) (Descartes)

T
im

e
(s
)
(S

y
n
o
n
y
m
)

Prop. P13 Times

10 1,000 100,000

10

1,000

100,000

HTC (Descartes)

H
T
C

(
S
y
n
o
n
y
m
)

Prop. P13 Hoare Triple Counts

Results: Modified Benchmarks
P13: ∀x,y,z.pick(x,y,z) = pick(y,x,z)

59

Times HTCs

Synonym
vs.
Syn

0.1 1 10 100

0.1

1

10

100

Time (s) (Syn)

T
im

e
(s
)
(S

y
n
o
n
y
m
)

Prop. P13 Times

10 1,000 100,000

10

1,000

100,000

HTC (Syn)
H
T
C

(
S
y
n
o
n
y
m
)

Prop. P13 Hoare Triple Counts

Results: Modified Benchmarks
P14: ∀x,y,z. pick(x,y,z) = pick(y,x,z) ∧ pick(x,y,z) = pick(z,y,x)

60

Times HTCs

Syn
vs.

Descartes

Synonym
vs.

Descartes

0.1 10 1,000

0.1

10

1,000

Time (s) (Descartes)

T
im

e
(s
)
(S

y
n
)

Prop. P14 Times

10 1,000 100,000

10

1,000

100,000

HTC (Descartes)

H
T
C

(
S
y
n
)

Prop. P14 Hoare Triple Counts

0.1 10 1,000

0.1

10

1,000

Time (s) (Descartes)

T
im

e
(s
)
(S

y
n
o
n
y
m
)

Prop. P14 Times

10 1,000 100,000

10

1,000

100,000

HTC (Descartes)

H
T
C

(
S
y
n
o
n
y
m
)

Prop. P14 Hoare Triple Counts

Descartes
times out on
all examples.

Results: Modified Benchmarks
P14: ∀x,y,z. pick(x,y,z) = pick(y,x,z) ∧ pick(x,y,z) = pick(z,y,x)

61

Times HTCs

Synonym
vs.
Syn

0.1 10 1,000

0.1

10

1,000

Time (s) (Syn)

T
im

e
(s
)
(S

y
n
o
n
y
m
)

Prop. P14 Times

10 1,000 100,000

10

1,000

100,000

HTC (Syn)
H
T
C

(
S
y
n
o
n
y
m
)

Prop. P14 Hoare Triple Counts

Related Work
• Cartesian Hoare Logic and Cartesian Loop Logic for relational verification (most closely

related)

• [Sousa and Dillig, 2016]

• Exploiting synchrony (by constructing [some kind of] product program)

• [Barthe et al. 2011; Lahiri et al. 2013; Strichman and Veitsman 2016; Felsing et al.
2014; Kiefer et al., 2016; De Angelis et al., 2016; Mordvinov and Fedyukovich, 2017]

• Exploiting symmetry in model checking

• [Emerson and Sistla, 1993; Clarke et al., 1993; Ip and Dill, 1996; Donaldson et al.,
2011]

• Without self-composition

• [Antonopoulos et al., 2017]

62

Summary

63

How can we maximize
the number of loops
over which we can
compute simpler

relational invariants?

How can we identify
and use symmetries in
programs and relational
specifications to avoid

solving redundant
verification problems?

We have seen approaches to addressing the
following two challenges in relational verification:

1 2

Extra Slides

P1 c P2

Composition
Can use standard verification techniques by applying composition.

P1

x1

y1

x2

y2=

=

P2

65

E.g. for equivalence-checking:

{x1 = x2} P1 c P2 {y1 = y2}

where c is a composition operator (e.g. sequential
composition or parallel composition)

Challenge: Loops

In this case, not all loops can be executed in lockstep, but
we still want to execute the first and second loops together.

66

while (i1 < 10) { x1 *= i1; i1++; } ||

while (i2 < 10) { x2 *= i2; i2++; } ||

while (i3 < 10) { x3 *= i3; i3++; }

{ x1 < x2 ∧ i1 = i2 ∧ i3 > i1 ∧ x1 > 0 ∧ i1 > 0 }

{ x1 < x2 ∧ i1 = i2 ∧ x1 > 0 ∧ i1 > 0 }

Symmetric Relational
Verification Problems

Two relational verification problem {pre} Ps {post} and
{pre} Ps’ {post} are symmetric under a permutation π
iff

1. π is a symmetry of formula pre ∧ post’

2. for every Pi ∈Ps and Pj ∈Ps’, if π(i) = j, then Pi and
Pj have the same number of inputs and outputs
and have logically equivalent encodings for the
same set of input variables and output variables

67

Symmetric Formulas

Let x1,…,xk be vectors of the same size over disjoint
sets of variables.

A symmetry π of a formula F(x1,…,xk) is a
permutation of set { xi | 1 ≤ i ≤ k } s.t.

F(x1,…,xk) ⇔ F(π(x1),…,π(xk))

68

Symmetry-Breaking
We can construct the following symmetry-breaking
predicate (SBPs) for the condition (xi > 5)

p1 ∧

(p1 ⇒ (((x1 > 5) ⇒ (x3 > 5)) ∧ p2))) ∧

(p2 ⇒ ((x3 > 5) ⇒ (x1 > 5)) ⇒ ((x2 > 5) ⇒ (x4 > 5)))

This is an adaptation of the SBPs constructed for
propositional logic in earlier work.

[Aloul et al., 2006]
[Crawford et al., 1996]

x1 > 5 ∧ x3 ≤ 5
not allowed

Synchrony on Conditionals:
Pruning Bonus

70

if (x1 > 0) then P1 else Q1 || if (x2 > 0) then P2 else Q2
{ x1 = x2 }

{ x1 = x2 }

P1 || P2

{ x1 = x2 ∧
x1 > 0 ∧
x2 > 0}

{ x1 ≠ x2 }
Q1 || P2

{ x1 = x2 ∧
x1 ≤ 0 ∧
x2 > 0}

{ x1 ≠ x2 }
P1 || Q2

{ x1 = x2 ∧
x1 > 0 ∧
x2 ≤ 0}

{ x1 ≠ x2 }
Q1 || Q2

{ x1 = x2 ∧
x1 ≤ 0 ∧
x2 ≤ 0}

{ x1 ≠ x2 }

