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Relational Verification
Given: 

•  k (k >1) programs (renamed so that they have 
independent sets of variables) 

• a relational specification (relating the variables) 
over the k programs 

Prove that the relational specification holds for the 
programs
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Example: Equivalence Checking
Given programs P1, P2, that respectively have 
inputs x1, x2 and 
outputs y1, y2,
prove x1 = x2 ⇒ y1 = y2.

P1 P2

x1

y1

x2

y2
=?

=
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Note: bold-faced variables are vectors



Hyperproperty Verification

• A hyperproperty is a relational property over k 
copies of the same program 

• The hyperproperty verification problem is the 
relational verification problem where all k programs 
are copies of the same program. 

• E.g. noninterference, monotonicity, transitivity
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Example: Noninterference
Security property for programs where variables have security types 
{low, high} 

Given two copies of the same program P1, P2, that respectively have 
inputs (lx1 : low, hx1 : high), (lx2 : low, hx2 : high) and 
outputs (ly1 : low, hy1 : high), (ly2 : low, hy2 : high), 
prove lx1 = lx2 ⇒ ly1 = ly2.

P1 P2

lx1

ly1

lx2

ly2
=?

=
hx1 hx2

hy1 hy2
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Example: Monotonicity
Given two copies of the same program P1, P2, that 
respectively have 

inputs x1, x2 , and 

outputs y1, y2, prove 

x1 ≤ x2 ⇒ y1 ≤ y2.

P1 P2

x1

y1

x2

y2
≤?

≤
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Composition

[Barthe et al., 2004]
[Terauchi and Aiken, 2005]8

P1

…

pre

post

P2

Pk

Sequential: {pre} P1 ; … ; Pk {post} 

• Pros: Can easily apply 
standard verification 
techniques 

• Cons: Inflexible, can result in 
more difficult verification 
problems



Composition

[Barthe et al., 2004]
[Terauchi and Aiken, 2005]9

Parallel: {pre} P1 || … || Pk {post} 

• Pros: Flexibility can let us 
pick easier verification 
subproblems 

• Cons: Need to come up 
with new techniques

P1 …

pre

post

P2 Pk
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Two new techniques: Synchrony, Symmetry 

Let’s consider the challenges that motivate them….

Synchrony and Symmetry



Challenge 1: Loops
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Challenge 1: Loops

Invariants: 

L1: x1 = x1init × i1! / i1init  ∧ … 

L2: x2 = x2init × i2! / i2init  ∧ …
12

while (i1 < 10) { x1 *= i1; i1++; } 

; 

while (i2 < 10) { x2 *= i2; i2++; }

{ x1 < x2   ∧   i1 = i2   ∧   x1 > 0   ∧   i1 > 0 }

Nonlinear
{ x1 < x2   ∧   i1 = i2   ∧   x1 > 0   ∧   i1 > 0 }

L1

L2



Challenge 1: Loops

Consider the loops in parallel instead.

13

while (i1 < 10) { x1 *= i1; i1++; } 

|| 

while (i2 < 10) { x2 *= i2; i2++; }

{ x1 < x2   ∧   i1 = i2   ∧   x1 > 0   ∧   i1 > 0 }

{ x1 < x2   ∧   i1 = i2   ∧   x1 > 0   ∧   i1 > 0 }



Challenge 1: Loops

(One) Relational Invariant: x1 < x2 ∧ i1 = i2 ∧ x1 > 0 ∧ i1 > 0

14

while (i1 < 10 && i2 < 10) { 

x1 *= i1; i1++; x2 *= i2; i2++; 

}

{ x1 < x2   ∧   i1 = i2   ∧   x1 > 0   ∧   i1 > 0 }

{ x1 < x2   ∧   i1 = i2   ∧   x1 > 0   ∧   i1 > 0 }

[Barthe et al., 2011]

lockstep 
execution



Relational Verification
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P1,1

…

pre

post

P1,3

P2,1

P2,2

Pk,1

Pk,2P1,2

P2,3 Pk,3

• Relating (i.e. synchronizing) intermediate points in programs 
 to get intermediate relational specifications 
 can result in easier verification problems 

• In particular, synchronizing structurally similar parts of the different programs 
 can yield simpler relational specifications

are structurally 
similar

say that

s

[Barthe et al., 2011]
[Sousa and Dillig, 2016]
[De Angelis et al., 2016]

and more



Lockstep Loops

Loops that iterate the same number of times are able 
to be executed in lockstep

[Barthe et al., 2011]
[Sousa and Dillig, 2016]16



Challenge 1: Loops

L1

x iterations

I1

L2

y iterations

I2

Lk-1

y iterations

Ik-1

Lk

y iterations

Ik

L3

x iterations

I3

…

x iterations

L3L1

I1,3,…

y iterations

Lk-1L2… Lk

I2,…,k-1,k

…

Handling each loop 
individually can require the 

generation of potentially 
complicated loop 

invariants.

How can we maximize the 
number of loops over 

which we can compute 
simpler relational 

invariants?
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Synchrony

Partition a set of loops into maximal sets of loops that 
can be executed in lockstep
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Synchrony
We assume we are given a relational invariant I. 

Note: You can use any of several existing techniques for invariant generation. 
The implementation (described later) uses a guess-and-check invariant 
generator.

L1 L2 Lk…

L1 L2 … LkI I

c1 c2 ck

19



Synchrony
When can we execute a set of loops in lockstep?

L1 L2 Lk…

[Sousa and Dillig, 2016]

c1 c2 ck

If any loop has terminated, all loops must have terminated.

I ∧ (¬c1 ∨ ¬c2  ∨…∨ ¬ck) ⇒ (¬c1 ∧ ¬c2  ∧… ∧ ¬ck)

20

(check)



Maximal Lockstep Loop 
Detection

¬(I ∧ (¬c1 ∨ ¬c2  ∨…∨ ¬ck) ⇒ (¬c1 ∧ ¬c2  ∧ … ∧ ¬ck))

• If unsatisfiable, all loops can be executed in 
lockstep. (Done!) 

• If satisfiable, then what? 

• Use model to partition the set of loops into 
those that have terminated (¬ci holds in the 
model) and those that have not (ci holds in the 
model) 

• Recurse on the two sets….
21

(partition)

(recurse)

(check)



Maximal Lockstep Loop 
Example

¬(I ∧ (¬c1 ∨ ¬c2  ∨…∨ ¬c5) ⇒ (¬c1 ∧ ¬c2  ∧ … ∧ ¬c5))

22

L1

x iterations

L2

y iterations

L4 L5L3

x iterations z iterations y iterations

c1 c2 c3 c4 c5

SAT: c1, c2, c3, ¬c4, and c5 hold in model 

L1

x iterations

L2

y iterations

L4L5L3

x iterations z iterationsy iterations

c1 c2 c3 c4c5

(check)

(partition)



Maximal Lockstep Loop 
Example

¬(I ∧ (¬c1 ∨ ¬c2  ∨ ¬c3 ∨ ¬c5) ⇒ (¬c1 ∧ ¬c2  ∧ ¬c3 ∧ ¬c5))

23

SAT: c1, ¬c2, c3, ¬c5 hold in model

L4

z iterations

c4

L1

x iterations

L2

y iterations

L5L3

x iterations y iterations

c1 c2 c3 c5

L1

x iterations

L3

x iterations

L5L2

y iterations y iterations

c1 c3 c2 c5

(recurse)

(check)

(partition)

Done!



Summary: Maximal 
Lockstep Loop Detection

Step 1. Check if current set can be executed in 
lockstep 

Step 2. Partition according to model (if necessary) 

Step 3. Recurse

24



Challenge 2: 
Redundancy

25



Challenge 2: Redundancy

26

if (x1 > y1) then P1 else Q1 

|| 

if (x2 > y2) then P2 else Q2

{ x1 ≠ x2 }

{ x1 ≠ x2 }



Challenge 2: Redundancy

27

if (x1 > y1) then P1 else Q1 || if (x2 > y2) then P2 else Q2
{ x1 ≠ x2 }

{ x1 ≠ x2 }

P1 || P2

{ x1 ≠ x2 ∧ 
x1 > y1 ∧ 
x2 > y2}

{ x1 ≠ x2 }
Q1 || P2

{ x1 ≠ x2 ∧ 
x1 ≤ y1 ∧ 
x2 > y2}

{ x1 ≠ x2 }
P1 || Q2

{ x1 ≠ x2 ∧ 
x1 > y1 ∧ 
x2 ≤ y2}

{ x1 ≠ x2 }
Q1 || Q2

{ x1 ≠ x2 ∧ 
x1 ≤ y1 ∧ 
x2 ≤ y2}

{ x1 ≠ x2 }
RVP1 RVP2 RVP3 RVP4

RVP - Relational Verification Problem



Challenge 2: Redundancy

P1,1

P1,2 P1,3

pre

post

Pk,1

Pk,2 Pk,3

…
Maybe for the given relational 

specification,

P1,2 Pk,3 and P1,3 Pk,2

are symmetric over indices.

… …

How can we identify and use symmetries 
in programs and 

in relational specifications 
to avoid solving redundant verification problems?

28



Symmetric Relational Verification 
Problems (RVPs)

29

if (x1 > y1) then P1 else Q1 

|| 

if (x2 > y2) then P2 else Q2

{ x1 ≠ x2 }

{ x1 ≠ x2 }

If you permute indices, you get the same problem.

Need a permutation π of indices that is a symmetry 
of the formulas (pre- and postconditions) and 
of the programs

if (x2 > y2) then P2 else Q2 

|| 

if (x1 > y1) then P1 else Q1

{ x2 ≠ x1 }

{ x2 ≠ x1 }

{1 ↦2, 2 ↦ 1}

(can e.g. check if at same program point for hyperproperties)



Leveraging Symmetry to 
Reduce Redundancies

• Find symmetries in formulas (permutation π) 

• Find symmetric RVPs (make sure programs are 
symmetric, i.e. π is a symmetry of the programs 
also) 

• Prune (via symmetry-breaking, lifted from SAT)

30



Leveraging Symmetry to 
Reduce Redundancies

• Find symmetries in formulas (permutation π)

• Find symmetric RVPs (make sure programs are 
symmetric, i.e. π is a symmetry of the programs 
also) 

• Prune (via symmetry-breaking, lifted from SAT)

31



Finding Symmetries of a 
Formula

• Prior work for SAT formulas: based on finding 
automorphisms of a colored graph 

• Our work: Lift SAT techniques to first-order 
theories (with equality, linear integer arithmetic)

32
[Aloul et al., 2006]

[Crawford et al., 2005]



Example: Finding 
Symmetries of a Formula

Step 1. Canonicalize  

𝜙 = x1 ≤ x2 ∧ x3 ≤ x4  

to CNF

𝜙’ = ((x1 < x2 ) ∨ (x1 = x2 )) ∧ ((x3 < x4 ) ∨ (x3 = x4))

33
[Aloul et al., 2006]

[Crawford et al., 2005]



Example: Finding 
Symmetries of a Formula

Step 2. Create colored graph from AST 

𝜙’ = ((x1 < x2 ) ∨ (x1 = x2 )) ∧ ((x3 < x4 ) ∨ (x3 = x4))

34



Example: Finding 
Symmetries of a Formula

Step 2. Create colored graph from ASTs 

Clauses: {(x1 < x2 ) ∨ (x1 = x2 ), (x3 < x4 ) ∨ (x3 = x4)}

x1 x2

=
∨

(x1,L) (x2,R)

<

x3 x4

=
∨

(x3,L) (x4,R)

<

AST AST
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Example: Finding 
Symmetries of a Formula

Step 2. Create graph from ASTs

x1 x2

=
∨

(x1,L) (x2,R)

<

x3 x4

=
∨

(x3,L) (x4,R)

<

Id Id Id Id
1 2 3 4

36



Example: Finding 
Symmetries of a Formula

Step 2. Create graph from ASTs

x x2

=
∨

(x,L) (x2,R)

<

x3 x4

=
∨

(x3,L) (x4,R)

<

Id Id Id Id
1 2 3 4

37



Example: Finding 
Symmetries of a Formula

Step 2. Create graph from ASTs

x(x,R) x

=
∨

(x,L)

<

x3 x4

=
∨

(x3,L) (x4,R)

<

Id Id Id Id
1 2 3 4

38



Example: Finding 
Symmetries of a Formula

Step 2. Create graph from ASTs

x(x,L)x

=
∨

(x,L)

<

x4

=
∨

(x4,R)

<

Id Id Id Id
1 2 3 4

x(x,R)

39



Example: Finding 
Symmetries of a Formula

Step 2. Create graph from ASTs

x(x,R) x(x,L)x

=
∨

(x,L)

< =
∨

<

Id Id Id Id
1 2 3 4

x(x,R)

40



Example: Finding 
Symmetries of a Formula

Step 3. Find graph automorphisms

1 2 3 4

π = {1 ↦ 3, 2 ↦ 4, 3 ↦ 1, 4 ↦ 2}

x(x,R) x(x,L)x

=
∨

(x,L)

< =
∨

<

Id Id Id Id

x(x,R)

41



Example: Finding 
Symmetries of a Formula

π = {1 ↦ 3, 2 ↦ 4, 3 ↦ 1, 4 ↦ 2}

42

𝜙 = x1 ≤ x2 ∧ x3 ≤ x4 

π(𝜙) = x3 ≤ x4 ∧ x1 ≤ x2 

𝜙 ⇔ π(𝜙)



Summary: Finding Symmetries 
of a Formula Automatically

Step 1. Canonicalize 

Step 2. Create graph from AST 

Step 3. Find graph automorphisms

43



How to apply symmetry?
• Aligning conditionals 
• So far we have considered trying to align loops in a particular way 
• We also would like to align conditional statements in order to give 

us more opportunities to exploit symmetry

44

P1,1

P1,2 P1,3

P1,0

P2,1

P2,2 P2,3

P2,0 P1,2 P2,3

P2,2 P1,3

P1,2 P2,2

P2,3P1,3

prune?



Aligning Conditionals: 
Example

45

R1; if (x1 > y1) then P1 else Q1 

|| 

S2; if (x2 > y2) then P2 else Q2

{ x1 ≠ x2 }

{ x1 ≠ x2 }

{ post(post(x1 ≠ x2, R1), S2) }

if (x1 > y1) then P1 else Q1 

|| 

if (x2 > y2) then P2 else Q2



Instantiation: 
Hyperproperty 

Verification

46



Instantiation: Hyperproperty 
Verification
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5 Instantiation of Strategies in Forward Analysis

We now describe an instantiation of our proposed strategies in a verification al-
gorithm based on forward analysis using a strongest-postcondition computation.
Other instantiations, e.g., on top of a Horn solver based on Property-Directed
Reachability [24] are possible, but outside the scope of this work.

1: procedure Verify(pre,Current , Ifs,Loops, post)
2: while Current 6= ? do
3: if ProcessStatement(pre, Pi, Ifs,Loops, post) = safe then return safe

4: if Loops 6= ? then HandleLoops(pre,Loops, post)
5: else if Ifs 6= ? then HandleIfs(pre, Ifs,Loops, post)
6: else return unsafe

Given an RVP in the form of a Hoare triple {Pre} P1|| · · · ||Pk {Post}, where ||
denotes parallel composition, the top-level Verify procedure takes as input the
relational specification pre = Pre and post = Post , the set of input programs
Current = {P1, . . . , Pk}, and empty sets Loops and Ifs. It uses a strongest-
postcondition computation to compute the next Hoare triple at each step until
it can conclude the validity of the original Hoare triple.

Synchronization. Throughout verification, the algorithm maintains three dis-
joint sets of programs: one for programs that are currently being processed
(Current), one for programs that have been processed up until a loop (Loops),
and one for programs that have been processed up until a conditional statement
(Ifs). The algorithm processes statements in each program independently, with
ProcessStatement choosing an arbitrary interleaving of statements from the
programs in Current . When the algorithm encounters the end of a program in
its call to ProcessStatement, it removes this program from the Current set.
At this point, the algorithm returns safe if the current Hoare triple is proven
valid. When a program has reached a point of control-flow divergence and is
processed by ProcessStatement, it is removed from Current and added to
the appropriate set (Loops or Ifs).

Handling Loops. Once all programs are in the Loops or Ifs sets (i.e. Current =
?), the algorithm handles the programs in the Loops set if it is nonempty. Han-

dleLoops behaves like CheckLockstep but computes postconditions where
possible; when a set of loops are able to be executed in lockstep, HandleLoops

computes their postconditions before placing the programs into the Terminated

set. After all loops have been placed in the Terminated set and a new precondi-
tion pre

0 has been computed, rather than returning Terminated , HandleLoops

invokes Verify(pre 0,Terminated , Ifs,?, post).

Handling Conditionals. When Current = Loops = ?, Verify handles condi-
tional statements. HandleIfs exploits symmetries by using the All-SAT query
with Lex-Leader SBPs as described in Sect. 4 and calls Verify on each gener-
ated verification problem.

11

Algorithm based on forward analysis where we maintain 
Hoare triples.

Maintain sets of program copies that begin with 
conditionals (Ifs) and loops (Loops).



Instantiation: Hyperproperty 
Verification
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5 Instantiation of Strategies in Forward Analysis

We now describe an instantiation of our proposed strategies in a verification al-
gorithm based on forward analysis using a strongest-postcondition computation.
Other instantiations, e.g., on top of a Horn solver based on Property-Directed
Reachability [24] are possible, but outside the scope of this work.

1: procedure Verify(pre,Current , Ifs,Loops, post)
2: while Current 6= ? do
3: if ProcessStatement(pre, Pi, Ifs,Loops, post) = safe then return safe

4: if Loops 6= ? then HandleLoops(pre,Loops, post)
5: else if Ifs 6= ? then HandleIfs(pre, Ifs,Loops, post)
6: else return unsafe

Given an RVP in the form of a Hoare triple {Pre} P1|| · · · ||Pk {Post}, where ||
denotes parallel composition, the top-level Verify procedure takes as input the
relational specification pre = Pre and post = Post , the set of input programs
Current = {P1, . . . , Pk}, and empty sets Loops and Ifs. It uses a strongest-
postcondition computation to compute the next Hoare triple at each step until
it can conclude the validity of the original Hoare triple.

Synchronization. Throughout verification, the algorithm maintains three dis-
joint sets of programs: one for programs that are currently being processed
(Current), one for programs that have been processed up until a loop (Loops),
and one for programs that have been processed up until a conditional statement
(Ifs). The algorithm processes statements in each program independently, with
ProcessStatement choosing an arbitrary interleaving of statements from the
programs in Current . When the algorithm encounters the end of a program in
its call to ProcessStatement, it removes this program from the Current set.
At this point, the algorithm returns safe if the current Hoare triple is proven
valid. When a program has reached a point of control-flow divergence and is
processed by ProcessStatement, it is removed from Current and added to
the appropriate set (Loops or Ifs).

Handling Loops. Once all programs are in the Loops or Ifs sets (i.e. Current =
?), the algorithm handles the programs in the Loops set if it is nonempty. Han-

dleLoops behaves like CheckLockstep but computes postconditions where
possible; when a set of loops are able to be executed in lockstep, HandleLoops

computes their postconditions before placing the programs into the Terminated

set. After all loops have been placed in the Terminated set and a new precondi-
tion pre

0 has been computed, rather than returning Terminated , HandleLoops

invokes Verify(pre 0,Terminated , Ifs,?, post).

Handling Conditionals. When Current = Loops = ?, Verify handles condi-
tional statements. HandleIfs exploits symmetries by using the All-SAT query
with Lex-Leader SBPs as described in Sect. 4 and calls Verify on each gener-
ated verification problem.

11

P1,1

P1,0

P1,2

P1,3 P1,4

P2,1

P2,0

P2,2

P2,3 P2,4

Current Ifs Loops

P3,1

P3,0

P3,2

P3,3 P3,4



Instantiation: Hyperproperty 
Verification
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5 Instantiation of Strategies in Forward Analysis

We now describe an instantiation of our proposed strategies in a verification al-
gorithm based on forward analysis using a strongest-postcondition computation.
Other instantiations, e.g., on top of a Horn solver based on Property-Directed
Reachability [24] are possible, but outside the scope of this work.

1: procedure Verify(pre,Current , Ifs,Loops, post)
2: while Current 6= ? do
3: if ProcessStatement(pre, Pi, Ifs,Loops, post) = safe then return safe

4: if Loops 6= ? then HandleLoops(pre,Loops, post)
5: else if Ifs 6= ? then HandleIfs(pre, Ifs,Loops, post)
6: else return unsafe

Given an RVP in the form of a Hoare triple {Pre} P1|| · · · ||Pk {Post}, where ||
denotes parallel composition, the top-level Verify procedure takes as input the
relational specification pre = Pre and post = Post , the set of input programs
Current = {P1, . . . , Pk}, and empty sets Loops and Ifs. It uses a strongest-
postcondition computation to compute the next Hoare triple at each step until
it can conclude the validity of the original Hoare triple.

Synchronization. Throughout verification, the algorithm maintains three dis-
joint sets of programs: one for programs that are currently being processed
(Current), one for programs that have been processed up until a loop (Loops),
and one for programs that have been processed up until a conditional statement
(Ifs). The algorithm processes statements in each program independently, with
ProcessStatement choosing an arbitrary interleaving of statements from the
programs in Current . When the algorithm encounters the end of a program in
its call to ProcessStatement, it removes this program from the Current set.
At this point, the algorithm returns safe if the current Hoare triple is proven
valid. When a program has reached a point of control-flow divergence and is
processed by ProcessStatement, it is removed from Current and added to
the appropriate set (Loops or Ifs).

Handling Loops. Once all programs are in the Loops or Ifs sets (i.e. Current =
?), the algorithm handles the programs in the Loops set if it is nonempty. Han-

dleLoops behaves like CheckLockstep but computes postconditions where
possible; when a set of loops are able to be executed in lockstep, HandleLoops

computes their postconditions before placing the programs into the Terminated

set. After all loops have been placed in the Terminated set and a new precondi-
tion pre

0 has been computed, rather than returning Terminated , HandleLoops

invokes Verify(pre 0,Terminated , Ifs,?, post).

Handling Conditionals. When Current = Loops = ?, Verify handles condi-
tional statements. HandleIfs exploits symmetries by using the All-SAT query
with Lex-Leader SBPs as described in Sect. 4 and calls Verify on each gener-
ated verification problem.

11

P1,1

P1,2

P1,3 P1,4

P2,1

P2,2

P2,3 P2,4

Ifs Loops

P3,1

P3,2

P3,3 P3,4

Current



Instantiation: Hyperproperty 
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5 Instantiation of Strategies in Forward Analysis

We now describe an instantiation of our proposed strategies in a verification al-
gorithm based on forward analysis using a strongest-postcondition computation.
Other instantiations, e.g., on top of a Horn solver based on Property-Directed
Reachability [24] are possible, but outside the scope of this work.

1: procedure Verify(pre,Current , Ifs,Loops, post)
2: while Current 6= ? do
3: if ProcessStatement(pre, Pi, Ifs,Loops, post) = safe then return safe

4: if Loops 6= ? then HandleLoops(pre,Loops, post)
5: else if Ifs 6= ? then HandleIfs(pre, Ifs,Loops, post)
6: else return unsafe

Given an RVP in the form of a Hoare triple {Pre} P1|| · · · ||Pk {Post}, where ||
denotes parallel composition, the top-level Verify procedure takes as input the
relational specification pre = Pre and post = Post , the set of input programs
Current = {P1, . . . , Pk}, and empty sets Loops and Ifs. It uses a strongest-
postcondition computation to compute the next Hoare triple at each step until
it can conclude the validity of the original Hoare triple.

Synchronization. Throughout verification, the algorithm maintains three dis-
joint sets of programs: one for programs that are currently being processed
(Current), one for programs that have been processed up until a loop (Loops),
and one for programs that have been processed up until a conditional statement
(Ifs). The algorithm processes statements in each program independently, with
ProcessStatement choosing an arbitrary interleaving of statements from the
programs in Current . When the algorithm encounters the end of a program in
its call to ProcessStatement, it removes this program from the Current set.
At this point, the algorithm returns safe if the current Hoare triple is proven
valid. When a program has reached a point of control-flow divergence and is
processed by ProcessStatement, it is removed from Current and added to
the appropriate set (Loops or Ifs).

Handling Loops. Once all programs are in the Loops or Ifs sets (i.e. Current =
?), the algorithm handles the programs in the Loops set if it is nonempty. Han-

dleLoops behaves like CheckLockstep but computes postconditions where
possible; when a set of loops are able to be executed in lockstep, HandleLoops

computes their postconditions before placing the programs into the Terminated

set. After all loops have been placed in the Terminated set and a new precondi-
tion pre

0 has been computed, rather than returning Terminated , HandleLoops

invokes Verify(pre 0,Terminated , Ifs,?, post).

Handling Conditionals. When Current = Loops = ?, Verify handles condi-
tional statements. HandleIfs exploits symmetries by using the All-SAT query
with Lex-Leader SBPs as described in Sect. 4 and calls Verify on each gener-
ated verification problem.
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P1,1

P1,2

P1,3 P1,4

P2,1

P2,2

P2,3 P2,4

Loops

P3,1

P3,2

P3,3 P3,4

Current Ifs

handle maximally in lockstep
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5 Instantiation of Strategies in Forward Analysis

We now describe an instantiation of our proposed strategies in a verification al-
gorithm based on forward analysis using a strongest-postcondition computation.
Other instantiations, e.g., on top of a Horn solver based on Property-Directed
Reachability [24] are possible, but outside the scope of this work.

1: procedure Verify(pre,Current , Ifs,Loops, post)
2: while Current 6= ? do
3: if ProcessStatement(pre, Pi, Ifs,Loops, post) = safe then return safe

4: if Loops 6= ? then HandleLoops(pre,Loops, post)
5: else if Ifs 6= ? then HandleIfs(pre, Ifs,Loops, post)
6: else return unsafe

Given an RVP in the form of a Hoare triple {Pre} P1|| · · · ||Pk {Post}, where ||
denotes parallel composition, the top-level Verify procedure takes as input the
relational specification pre = Pre and post = Post , the set of input programs
Current = {P1, . . . , Pk}, and empty sets Loops and Ifs. It uses a strongest-
postcondition computation to compute the next Hoare triple at each step until
it can conclude the validity of the original Hoare triple.

Synchronization. Throughout verification, the algorithm maintains three dis-
joint sets of programs: one for programs that are currently being processed
(Current), one for programs that have been processed up until a loop (Loops),
and one for programs that have been processed up until a conditional statement
(Ifs). The algorithm processes statements in each program independently, with
ProcessStatement choosing an arbitrary interleaving of statements from the
programs in Current . When the algorithm encounters the end of a program in
its call to ProcessStatement, it removes this program from the Current set.
At this point, the algorithm returns safe if the current Hoare triple is proven
valid. When a program has reached a point of control-flow divergence and is
processed by ProcessStatement, it is removed from Current and added to
the appropriate set (Loops or Ifs).

Handling Loops. Once all programs are in the Loops or Ifs sets (i.e. Current =
?), the algorithm handles the programs in the Loops set if it is nonempty. Han-

dleLoops behaves like CheckLockstep but computes postconditions where
possible; when a set of loops are able to be executed in lockstep, HandleLoops

computes their postconditions before placing the programs into the Terminated

set. After all loops have been placed in the Terminated set and a new precondi-
tion pre

0 has been computed, rather than returning Terminated , HandleLoops

invokes Verify(pre 0,Terminated , Ifs,?, post).

Handling Conditionals. When Current = Loops = ?, Verify handles condi-
tional statements. HandleIfs exploits symmetries by using the All-SAT query
with Lex-Leader SBPs as described in Sect. 4 and calls Verify on each gener-
ated verification problem.
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Instantiation: Hyperproperty 
Verification
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5 Instantiation of Strategies in Forward Analysis

We now describe an instantiation of our proposed strategies in a verification al-
gorithm based on forward analysis using a strongest-postcondition computation.
Other instantiations, e.g., on top of a Horn solver based on Property-Directed
Reachability [24] are possible, but outside the scope of this work.

1: procedure Verify(pre,Current , Ifs,Loops, post)
2: while Current 6= ? do
3: if ProcessStatement(pre, Pi, Ifs,Loops, post) = safe then return safe

4: if Loops 6= ? then HandleLoops(pre,Loops, post)
5: else if Ifs 6= ? then HandleIfs(pre, Ifs,Loops, post)
6: else return unsafe

Given an RVP in the form of a Hoare triple {Pre} P1|| · · · ||Pk {Post}, where ||
denotes parallel composition, the top-level Verify procedure takes as input the
relational specification pre = Pre and post = Post , the set of input programs
Current = {P1, . . . , Pk}, and empty sets Loops and Ifs. It uses a strongest-
postcondition computation to compute the next Hoare triple at each step until
it can conclude the validity of the original Hoare triple.

Synchronization. Throughout verification, the algorithm maintains three dis-
joint sets of programs: one for programs that are currently being processed
(Current), one for programs that have been processed up until a loop (Loops),
and one for programs that have been processed up until a conditional statement
(Ifs). The algorithm processes statements in each program independently, with
ProcessStatement choosing an arbitrary interleaving of statements from the
programs in Current . When the algorithm encounters the end of a program in
its call to ProcessStatement, it removes this program from the Current set.
At this point, the algorithm returns safe if the current Hoare triple is proven
valid. When a program has reached a point of control-flow divergence and is
processed by ProcessStatement, it is removed from Current and added to
the appropriate set (Loops or Ifs).

Handling Loops. Once all programs are in the Loops or Ifs sets (i.e. Current =
?), the algorithm handles the programs in the Loops set if it is nonempty. Han-

dleLoops behaves like CheckLockstep but computes postconditions where
possible; when a set of loops are able to be executed in lockstep, HandleLoops

computes their postconditions before placing the programs into the Terminated

set. After all loops have been placed in the Terminated set and a new precondi-
tion pre

0 has been computed, rather than returning Terminated , HandleLoops

invokes Verify(pre 0,Terminated , Ifs,?, post).

Handling Conditionals. When Current = Loops = ?, Verify handles condi-
tional statements. HandleIfs exploits symmetries by using the All-SAT query
with Lex-Leader SBPs as described in Sect. 4 and calls Verify on each gener-
ated verification problem.
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Evaluation
Prototype 

• Built on top of Descartes [Sousa and Dillig, 2016] 

• Two variants: 

• Syn - uses synchrony 

• Synonym - uses synchrony and symmetry 

Benchmarks 

• 33 small Stackoverflow Java benchmarks (21-107 LOC) from original 
Descartes evaluation [Sousa and Dillig, 2016] 

• 16 larger, modified Stackoverflow Java benchmarks (62-301 LOC) 

All experiments conducted on a MacBook Pro with a 2.7GHz Intel Core i5 
processor and 8GB RAM. 
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Example Benchmark
public class Match implements Comparator<Match>{
    int score;
    int seq1start;
    int seq2start;

    @Override
    public int compare(Match o1, Match o2) {
      // first compare scores
      if (o1.score > o2.score) return -1; /* higher score for o1 -> o1 */
      if (o1.score < o2.score) return 1; /* higher score for o2 -> o2 */

      // scores are equal, go on with the position
      if ((o1.seq1start + o1.seq2start) < (o2.seq1start+o2.seq2start)
          return -1; /* o1 farther left */
      if ((o1.seq1start + o1.seq2start) > (o2.seq1start+o2.seq2start))
          return 1; /* o2 farther left */

      // they're equally good
      return 0;
    }
}
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Results: Small Stackoverflow 
Benchmarks

P1: ∀x,y. sgn(compare(x,y)) = -sgn(compare(y,x))
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Results: Small Stackoverflow 
Benchmarks

P2: ∀x,y,z. (compare(x,y) > 0 ∧ compare(y,z) > 0) ⇒ compare(x,z) > 0 
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Results: Small Stackoverflow 
Benchmarks

P3: ∀x,y,z. compare(x,y) = 0 ⇒ (sgn(compare(x,z)) = sgn(compare(y,z)))
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Results: Modified Benchmarks
P13: ∀x,y,z.pick(x,y,z) = pick(y,x,z)
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Results: Modified Benchmarks
P13: ∀x,y,z.pick(x,y,z) = pick(y,x,z)
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Results: Modified Benchmarks
P14: ∀x,y,z. pick(x,y,z) = pick(y,x,z) ∧ pick(x,y,z) = pick(z,y,x)
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Results: Modified Benchmarks
P14: ∀x,y,z. pick(x,y,z) = pick(y,x,z) ∧ pick(x,y,z) = pick(z,y,x)
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Related Work
• Cartesian Hoare Logic and Cartesian Loop Logic for relational verification (most closely 

related) 

• [Sousa and Dillig, 2016] 

• Exploiting synchrony (by constructing [some kind of] product program) 

• [Barthe et al. 2011; Lahiri et al. 2013; Strichman and Veitsman 2016; Felsing et al. 
2014; Kiefer et al., 2016; De Angelis et al., 2016; Mordvinov and Fedyukovich, 2017] 

• Exploiting symmetry in model checking 

• [Emerson and Sistla, 1993; Clarke et al., 1993; Ip and Dill, 1996; Donaldson et al., 
2011] 

• Without self-composition 

• [Antonopoulos et al., 2017]
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Summary
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How can we maximize 
the number of loops 
over which we can 
compute simpler 

relational invariants?

How can we identify 
and use symmetries in 
programs and relational 
specifications to avoid 

solving redundant 
verification problems?

We have seen approaches to addressing the 
following two challenges in relational verification:

1 2



Extra Slides



P1 c P2

Composition
Can use standard verification techniques by applying composition. 

P1

x1

y1

x2

y2=

=

P2

65

E.g. for equivalence-checking: 

{x1 = x2} P1 c P2 {y1 = y2} 

where c is a composition operator (e.g. sequential 
composition or parallel composition)



Challenge: Loops

In this case, not all loops can be executed in lockstep, but 
we still want to execute the first and second loops together.
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while (i1 < 10) { x1 *= i1; i1++; } || 

while (i2 < 10) { x2 *= i2; i2++; } || 

while (i3 < 10) { x3 *= i3; i3++; }

{ x1 < x2 ∧ i1 = i2 ∧ i3 > i1 ∧ x1 > 0 ∧ i1 > 0 }

{ x1 < x2 ∧ i1 = i2 ∧ x1 > 0 ∧ i1 > 0 }



Symmetric Relational 
Verification Problems

Two relational verification problem {pre} Ps {post} and 
{pre} Ps’ {post} are symmetric under a permutation π 
iff 

1. π is a symmetry of formula pre ∧ post’ 

2. for every Pi ∈Ps and Pj ∈Ps’, if π(i) = j, then Pi  and 
Pj  have the same number of inputs and outputs 
and have logically equivalent encodings for the 
same set of input variables and output variables
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Symmetric Formulas

Let x1,…,xk be vectors of the same size over disjoint 
sets of variables. 

A symmetry π of a formula F(x1,…,xk) is a 
permutation of set { xi  | 1 ≤ i ≤ k } s.t. 

F(x1,…,xk ) ⇔ F(π(x1),…,π(xk))
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Symmetry-Breaking
We can construct the following symmetry-breaking 
predicate (SBPs) for the condition (xi > 5) 

p1 ∧ 

(p1 ⇒ (((x1 > 5) ⇒ (x3 > 5)) ∧ p2))) ∧ 

(p2 ⇒ ((x3 > 5) ⇒ (x1 > 5)) ⇒ ((x2 > 5) ⇒ (x4 > 5))) 

This is an adaptation of the SBPs constructed for 
propositional logic in earlier work.

[Aloul et al., 2006]
[Crawford et al., 1996]

x1 > 5 ∧ x3 ≤ 5 
not allowed



Synchrony on Conditionals: 
Pruning Bonus
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if (x1 > 0) then P1 else Q1 || if (x2 > 0) then P2 else Q2
{ x1 = x2 }

{ x1 = x2 }

P1 || P2

{ x1 = x2 ∧ 
x1 > 0 ∧ 
x2 > 0}

{ x1 ≠ x2 }
Q1 || P2

{ x1 = x2 ∧ 
x1 ≤ 0 ∧ 
x2 > 0}

{ x1 ≠ x2 }
P1 || Q2

{ x1 = x2 ∧ 
x1 > 0 ∧ 
x2 ≤ 0}

{ x1 ≠ x2 }
Q1 || Q2

{ x1 = x2 ∧ 
x1 ≤ 0 ∧ 
x2 ≤ 0}

{ x1 ≠ x2 }


