Bicubical Directed Type Theory

Matthew Weaver

General Examination

Bicubical Directed Type Theory

- Bicubical directed type theory is a constructive model of type theory
- It extends cubical type theory with an second notion of path that is directed
- We define a particularly well behaved universe of types in our model and construct directed univalence for this universe
- This is joint work with Dan Licata

What is it good for?

- Bicubical directed type theory provides a constructive setting for category theory
- Homotopy/cubical type theory has not only made it easier to formalize existing proofs in homotopy theory, but inspired new proofs
- Directed type theory could do the same for category theory

What is it good for?

Today we'll focus on one specific application that seems most relevant to this audience:
formal verification of computational structures

A New Foundation for Formal Verification

- We're at a point where formal verification of real, large-scale software systems and computational structures is becoming tractable

CAKEML

A Verified Implementation of ML

A Verified Implementation of ML

Certikos

A New Foundation for Formal Verification

- While there has been some improvement, these proof-developments are unavoidably massive and time-consuming to develop
- The ease of verification is limited by the proof theory used in these projects
- Directed type theory provides a new setting for these proofs with primitives that correspond to fundamental concepts in computer science
- This change in foundational theory results in proofs and programs that are shorter and easier to write

But First:
 The Simply Typed Lambda Calculus

(the old-fashioned way)

Let's Formalize STLC

- Let's define the simply typed lambda calculus inside of Agda,
- and then prove that our definition is invariant under weakening:

$$
\frac{\Gamma \vdash t: \tau}{\Gamma, x: \tau^{\prime} \vdash t: \tau}
$$

- Warning: This may get a bit ugly

Let's Formalize STLC

data Ty : Type where
A : Ty
_ \quad : $\mathrm{Ty} \rightarrow \mathrm{Ty} \rightarrow \mathrm{Ty}$

data Ctx : Type where

- : Ctx
_, _ : Ctx \rightarrow Ty \rightarrow Ctx

Let's Formalize STLC

$$
\begin{aligned}
& \text { Var : Ctx } \rightarrow \text { Type } \\
& \operatorname{Var} \cdot(\Gamma \quad=\stackrel{\perp}{\operatorname{Var}}(\Gamma)=(\operatorname{Var} \Gamma)+T \\
& \operatorname{Var}\left(x_{1}: \tau_{1}, x_{2}: \tau_{2}, \ldots, x_{n}: \tau_{n}\right) \\
& :=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\} \\
& \text { data Tm (} \Gamma \text { : Ctx) : Type where } \\
& \text { Tm t:= } \\
& \begin{array}{l}
\text { var : Var } \Gamma \rightarrow \mathrm{Tm} \Gamma \\
\mathrm{abs}:(\tau: \operatorname{Ty}) \rightarrow \mathrm{Tm}(\Gamma, \tau) \rightarrow \mathrm{Tm} \Gamma \\
\mathrm{app}: \mathrm{Tm} \Gamma \rightarrow \mathrm{Tm} \Gamma \rightarrow \mathrm{Tm} \Gamma
\end{array} \\
& \text { | var x } \\
& \text { | } \lambda \mathrm{t} . \mathrm{t} \\
& \text { |tt' }
\end{aligned}
$$

Let's Formalize STLC

$$
\begin{aligned}
& \text { getTy : (} \Gamma: \text { Ctx }) \rightarrow \text { Var } \Gamma \rightarrow \text { Ty } \\
& \text { getTy } \cdot x=\text { abort } x \\
& \text { getTy }(\Gamma, \tau)(\operatorname{inr} x)=\tau \\
& \text { getTy }(\Gamma, \tau)(\text { inl } x)=\text { getTy } \Gamma x
\end{aligned}
$$

Let＇s Formalize STLC

```
data _\vdash_Є_ (\Gamma : Ctx) : Tm Г -> Ty -> Type where
    tvar : (x : Var Г)
    \Gamma \vdash var x G getTy 「 x
tabs : {\tau \tau' : Ty} {t : Tm (\Gamma , \tau)}
    (_ : 「 , \tau \vdash t \in \tau')
    \Gamma \vdash (abs \tau t) \in \tau = \tau'
tapp : {\tau \tau' : Ty} {t t' : Tm 「}
```



```
        \Gamma \vdash app t t' \in \tau'
```


Let's Formalize STLC

Now let's show everything is invariant under weakening of contexts

Let＇s Formalize STLC

```
wk-Var : \forall \Gamma \tau, Var \Gamma -> Var (\Gamma , \tau)
wk-Var \Gamma \tau = inl
```

```
wk-Tm : \(\forall \Gamma \tau, \operatorname{Tm} \Gamma \rightarrow \operatorname{Tm}(\Gamma, \tau)\)
wk-Tm 「 t (var x) = var (wk-Var 「 七 x )
wk-Tm 「 т (app t t') = app (wk-Tm 「 七 t)
                        (wk-Tm 「 七 t')
wk-Tm 「 七 (abs \(\left.\tau^{\prime} \mathrm{t}\right)=\mathrm{abs} \tau^{\prime}\) ??? : \(\mathrm{Tm}(\Gamma, \tau, \tau ')\)
```


Let's Formalize STLC

$$
\begin{aligned}
& \text { Loc : Ctx } \rightarrow \text { Type } \\
& \text { Loc • } \quad \text { T } \\
& \operatorname{Loc}(\Gamma, \tau)=(\text { Loc } \Gamma)+T \\
& \text { wk-Ctx : (} \quad \text { : Ctx) } \rightarrow \text { Ty } \rightarrow \text { Loc } \Gamma \rightarrow \text { Ctx } \\
& \text { wk-Ctx • } \quad \text { l }=\text { • , } \tau \\
& \text { wk-Ctx (} \Gamma, \tau ') ~ \tau(i n r ~ l)=(\Gamma, ~ \tau '), ~ \tau
\end{aligned}
$$

$$
\begin{aligned}
& f^{l} \\
& \Gamma=\bullet, \tau_{1}, \ldots, \tau_{n}, \tau_{n+1}, \ldots \xrightarrow{\text { wk-Ctx } \Gamma \tau}
\end{aligned}
$$

Let＇s Formalize STLC

$$
\begin{aligned}
& \text { Loc : Ctx } \rightarrow \text { Type } \\
& \text { Loc • } \quad \text { T } \\
& \text { Loc (Г , т) = (Loc 「) + T } \\
& \text { wk-Ctx : (Г : Ctx) } \rightarrow \text { Ty } \rightarrow \text { Loc 「 } \rightarrow \text { Ctx } \\
& \text { wk-Ctx • } \quad \text { l }=\text { • , } \tau \\
& \text { wk-Ctx (} \Gamma, \tau ') ~ \tau(i n r ~ l)=(\Gamma, \tau '), ~ \tau
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma=\cdot, \tau_{1}, \ldots, \tau_{n}, \tau_{n+1}, \ldots \xrightarrow{\text { wk-Ctx } \Gamma \tau \tau} \quad \bullet, \tau_{1}, \ldots, \tau_{n}, \tau, \tau_{n+1}, \ldots
\end{aligned}
$$

Let＇s Formalize STLC

```
wk-Var : \forall 「 \tau l, Var 「 -> Var (wk-Ctx 「 \tau l)
wk-Var - \tau l x = abort x
wk-Var (\Gamma , \tau') \tau (inr l) x = inl x
wk-Var (\Gamma , \tau') \tau (inl l) (inr x) = inr x
wk-Var (\Gamma , \tau') \tau (inl l) (inl x) = inl (wk-Var 「 \tau l x)
```


Let＇s Formalize STLC

```
wk-Tm : \forall 「 \tau l, Tm 「 -> Tm (wk-Ctx 「 \tau l)
wk-Tm 「 \tau l (var x) = var (wk-Var 「 \tau l x )
wk-Tm 「 \tau l (app t t') = app (wk-Tm \Gamma \tau l t)
wk-Tm 「 \tau l (abs \tau' t) = abs \tau' (wk-Tm (\Gamma , \tau') \tau (inl l) t)
```

Let's Formalize STLC


```
wk-Tc \Gamma \tau l (tvar x) = coe ( \lambda \tau' > _ F _ \in \tau')
                            (wk-getTy 「 \overline{\tau l x)}
    (tvar (wk-Var 「 \tau l x))
wk-Tc \Gamma \tau l (tabs tc) = tabs (wk-Tc (\Gamma , _) \tau (inl l) tc)
wk-Tc \Gamma \tau l (tapp tc tc') = tapp (wk-Tc \Gamma \tau l tc)
                            (wk-Tc \Gamma \tau l tc')
```


Let's Formalize STLC

- We know the only interesting part of weakening is its action on variables
- The type theory doesn't, resulting in verbose but trivial programs and proofs

Let's Formalize STLC

What if we want to weaken by multiple variables at once?

- We can iterate our previously defined weakening functions, which is inefficient but maintains our proof guarantees
- We can reimplement a more efficient version and redo all of the proofs

Let's Formalize STLC

- When it comes to weakening, we demonstrate there is an inclusion of the types in the type families

$$
\operatorname{Var} \Gamma \subseteq \operatorname{Var}(\Gamma, \tau) \quad \operatorname{Tm} \Gamma \subseteq \operatorname{Tm}(\Gamma, \tau)
$$

- Can we potentially gain insight by comparing this to subtyping?

$$
\operatorname{Var} \Gamma<: \operatorname{Var}(\Gamma, \tau) \quad \operatorname{Tm} \Gamma<: \operatorname{Tm}(\Gamma, \tau)
$$

Let's Formalize STLC

- Let's consider a type theory where we can specify that, for any type family F : Ctx \rightarrow Type, it must be the case that $F \Gamma<$: $F(\Gamma, \tau)$
- We would like this relation to have congruence rules, like subtyping
- e.g. we can use that we know how to weaken variables to define how to weaken terms,
- ... and use both of these to define how to weaken typing derivations

Let's Formalize STLC

- We don't want to restrict every F : Ctx \rightarrow Type to those where there is a unique way for $\mathrm{F} \Gamma<$: $\mathrm{F}(\Gamma, \tau)$
- e.g. we could also implement our variables to be reversed (inside-out)
- Therefore this theory must keep track of which proof of this relation we are using: p : F 「 <: F ($\mathrm{C}, \mathrm{\tau}$)
- p is a special function specifying how to turn a $F \Gamma$ into a $F(\Gamma, \tau)$

Let's Formalize STLC

- Thus, in this theory, $A<$: B has some qualities of subtyping, but is computationally relevant
- Can we define a theory with a notion that strike this balance between functions and subtyping? Yes!

Review of Subtyping

- We equip a type theory with a new judgement: $A<$: B for types A and B

$$
\frac{t: A \quad A<: B}{t: B}
$$

- Example:

Merging Subtyping and Functions

- As I already hinted towards a theory where subtyping looks like functions, let's be explicit when we use subtyping in our syntax:

$$
\frac{\mathrm{t}: \mathrm{A} \quad \mathrm{~A}<: \mathrm{B}}{\mathrm{t}: \mathrm{B}}
$$

Merging Subtyping and Functions

- As I already hinted towards a theory where subtyping looks like functions, let's be explicit when we use subtyping in our syntax:

$$
\begin{array}{cl}
\mathrm{t}: \mathrm{A} & \mathrm{~A}<: \mathrm{B} \\
\operatorname{cast}_{\mathrm{A}<: \mathrm{B}} \mathrm{t}: \mathrm{B}
\end{array}
$$

Merging Subtyping and Functions

- As I already hinted towards a theory where subtyping looks like functions, let's be explicit when we use subtyping in our syntax:

$$
\frac{\mathrm{A}<: \mathrm{B}}{\operatorname{cast}_{\mathrm{A}<}: \mathrm{B}: \mathrm{A} \rightarrow \mathrm{~B}}
$$

Merging Subtyping and Functions

- What might subtyping look like were it internally visible in the language?

$$
\frac{A: \text { Type } \quad \text { B : Type }}{A<: B: \text { Type }}
$$

Merging Subtyping and Functions

- What might subtyping look like were it internally visible in the language?

$$
\frac{p: A<: B}{\operatorname{cast}_{A<: B} p: A \rightarrow B}
$$

Merging Subtyping and Functions

- What might subtyping look like were it internally visible in the language?

$$
\frac{f: A \rightarrow B}{\text { dua } f: A<: B}
$$

Merging Subtyping and Functions

- What might subtyping look like were it internally visible in the language?

$$
\frac{f: A \rightarrow B}{\operatorname{cast}_{A<: B}(\text { dua } f) \equiv_{\beta} f}
$$

Merging Subtyping and Functions

- What might subtyping look like were it internally visible in the language?

$$
\left.\frac{\mathrm{p}: \mathrm{A}<: \mathrm{B}}{\operatorname{dua}\left(\operatorname{cast}_{\mathrm{A}:}: \mathrm{B}\right.} \mathrm{p}\right) \equiv_{\eta} \mathrm{p}
$$

Merging Subtyping and Functions

- What might subtyping look like were it internally visible in the language?

$$
\begin{aligned}
& \frac{A: \text { Type } \quad \text { B : Type }}{\text { A <: B : Type }} \\
& \frac{p: A<: B}{\text { dua }\left(\operatorname{cast}_{A<: B} p\right) \equiv_{\eta} p} \\
& \frac{f: A \rightarrow B}{\operatorname{cast}_{A<: B}(\text { dua } f) \equiv_{\beta} f}
\end{aligned}
$$

Merging Subtyping and Functions

- Subtyping is now just a wrapper for the function type...
- ...with no additional structure or payoff.
- Yet.

Beyond Subtyping

- Let's think back to the STLC:
- Using this odd perspective of subtyping, we've proven that, $\forall\ulcorner\tau$,

$$
\operatorname{Var} \Gamma<: \operatorname{Var}(\Gamma, \tau) \quad \operatorname{Tm} \Gamma<: \operatorname{Tm}(\Gamma, \tau)
$$

- As mentioned before, we always want that, for every F : Ctx \rightarrow Type,

$$
F \Gamma<: F(\Gamma, \tau)
$$

Beyond Subtyping

- Let's extend our theory to make this restriction possible!
- As is typical in dependent type theory, let's not distinguish types and terms

$$
\frac{A: \text { Type } \quad x: A \quad y: A}{x<: y: \text { Type }}
$$

Beyond Subtyping

- Let's extend our theory to make this restriction possible!
- As is typical in dependent type theory, let's not distinguish types and terms

$$
\frac{A: \text { Type } \quad x: A \quad y: A}{\text { Hom } x: \text { Type }}
$$

- We call terms of Hom x y "morphisms" or "directed paths" from x to y

Beyond Subtyping

We equip every type with a proof-relevant binary relation that is reflexive
$\frac{x: A}{\text { id } x: \operatorname{Hom} x \times}$

Beyond Subtyping

We equip every type with a proof-relevant binary relation that is reflexive, transitive

$$
\begin{gathered}
x y z: A \quad p: \operatorname{Hom} x y \quad q: \operatorname{Hom} y z \\
\hline p \circ q: \operatorname{Hom} x z
\end{gathered}
$$

Beyond Subtyping

We equip every type with a proof-relevant binary relation that is reflexive, transitive and congruent
$x: A$
$f: A \rightarrow B: A$
ap $f p: \operatorname{Hom}(f x)(f y)$

- The type theory insures that all functions preserve this relation

Nontrivial Morphisms

- Now that we have morphisms in all types, let's define datatypes where this morphism structure is nontrivial
- The Idea: allow inductive types to include constructors for both terms and the morphisms
- The induction principle has cases corresponding to both kinds of constructors

Nontrivial Morphisms

$$
\begin{aligned}
& \text { data Ctx : Type where } \\
& \text { - : Ctx } \\
& \bar{w}^{\prime}-\quad: \operatorname{Ctx} \rightarrow \mathrm{Ty} \rightarrow \mathrm{Ctx}, \\
& \text { Ctx-rec : (A : Type) } \\
& \text { (} \mathrm{C}_{1} \text { : A) } \\
& \left(C_{2}: A \rightarrow T y \rightarrow A\right) \\
& \text { (} \mathrm{C}_{3}: \forall \mathrm{a} \tau \text {, Hom } \mathrm{a}\left(\mathrm{C}_{2} \mathrm{a}\right. \text { т)) } \\
& \text { Ctx } \rightarrow \text { A }
\end{aligned}
$$

$$
\text { Ctx-rec A C1 C2 } \mathrm{C}_{3} \cdot \equiv_{\beta} \mathrm{C}_{1}
$$

$$
\text { Ctx-rec A } C_{1} C_{2} C_{3}(\Gamma, \tau) \equiv_{B} C_{2}\left(C t x-r e c A C_{1} C_{2} C_{3} \Gamma\right) \tau
$$

Nontrivial Morphisms

```
data Ctx : Type where
    - : Ctx
    _,
```

- Note there are no cases in both the definition and the recursion principle corresponding to the fact morphisms are reflexive, transitive and congruent

\section*{What's up with ap?
 | $x: A$ |
| :---: |
| $f: A \rightarrow B \quad p: \operatorname{Hom} x y$ |
| $a p f(\operatorname{Hom}(f x)(f y)$ |}

- This rule states that everything is covariant:

Given A A' B : Type, and p : Hom A A',

$$
\operatorname{ap}(\lambda X \rightarrow(X \rightarrow B)) p: \operatorname{Hom}(A \rightarrow B)\left(A^{\prime} \rightarrow B\right)
$$

What's up with ap?

- In this framework, morphisms in Type can be thought of as describing how two types are related, and are not (just) functions
- Given F : Type \rightarrow Type, ap F is the proof that F sends related inputs to related outputs
- We'd like to define a universe of types where morphisms are functions
- Let's call it UCov
- Given F : UCov \rightarrow UCov, ap F maps a function f : A \rightarrow B to a function ap F f : F A \rightarrow F B

Universe for Subtyping

- In order for F : A \rightarrow UCov to typecheck, F must be covariant
- e.g. $\lambda X \rightarrow(A \rightarrow X):$ UCov \rightarrow UCov typechecks

$$
\frac{B<: B^{\prime}}{A \rightarrow B<: A \rightarrow B^{\prime}}
$$

- e.g. $\lambda X \rightarrow(X \rightarrow B):$ UCov \rightarrow UCov does not typecheck

- As morphisms coincide with functions, UCov is equipped with the following:

```
dua : {A B : UCov}
    (A -> B)
    Hom A B
```

```
dcoe : {A : Type} (F : A }->\mathrm{ UCov)
    {x y : A} (p : Hom x y)
    Fx
```


Universe for Subtyping

```
dcoe : {A : Type} (F : A -> UCov)
    {x y : A} (p : Hom x y)
```


- As functions are morphisms in UCov, this is the same as saying:

$$
\frac{F: A \rightarrow \text { UCov } \quad \text { Hom } x y}{\operatorname{Hom}(F x)(F y)}
$$

Universe for Subtyping

```
dcoe : {A : Type} (F : A -> UCov)
    {x y : A} (p : Hom x y)
    F x f F y
```

- As functions are morphisms in UCov, this is the same as saying:

$$
\frac{F: A \rightarrow \text { UCov } \quad \text { Hom } x y}{F \times<: ~ y}
$$

Universe for Subtyping

```
dcoe : {A : Type} (F : A }->\mathrm{ UCov)
    {x y : A} (p : Hom x y)
    F x f F y
```

- As functions are morphisms in UCov, this is the same as saying:

$$
\frac{F: C t x \rightarrow \text { UCov }}{F \Gamma<: F(\Gamma, \tau)}
$$

Universe for Subtyping

- We can also prove that UCov is closed under various type-formers:

\perp : UCov

$$
\frac{F: \text { UCov } \rightarrow \text { UCov polynomial }}{\mu \mathrm{F}: \mathrm{UCov}}
$$

(i.e. inductive types)

Universe for Subtyping

$\frac{A: U C o v}{A \times B: U C o v}$

- Because we have dcoe for UCov, this closure property is a proof that there is a unique solution to the following:

$$
\frac{A<: A^{\prime} \quad B<: B^{\prime}}{A \times B<: A^{\prime} \times B^{\prime}}
$$

- Thus, by working in UCov, we get the congruence properties we wanted

The Payoff

Let's check out what it's like to use this type theory

Let's Formalize STLC (Again)

data Ty : Type where
A : Ty
\Rightarrow _ $: ~ \mathrm{Ty} \rightarrow \mathrm{Ty} \rightarrow \mathrm{Ty}$

Let's Formalize STLC (Again)

data Ty : UCov where
A $\quad \begin{array}{l}\text { Ty } \\ \Rightarrow-\end{array}$
Ty Ty \rightarrow Ty

Let's Formalize STLC (Again)


```
data Ctx : Type where
    - : Ctx
    _,_ : Ctx -> Ty -> Ctx
```

Let's Formalize STLC (Again)

data Ctx : Type where

- : Ctx
, : Ctx \rightarrow Ty \rightarrow Ctx
$\bar{w} k=: \forall \Gamma \tau, \operatorname{Hom} \Gamma(\Gamma, \tau)$

Let's Formalize STLC (Again)

Var : Ctx \rightarrow Type
Var • =
$\operatorname{Var}(\Gamma, \tau)=(\operatorname{Var} \Gamma)+\mathrm{T}$

Let's Formalize STLC (Again)

$\begin{array}{r}-\quad 0 \\ +\quad 2 \\ \hline\end{array}$

```
Var: \(\operatorname{Ctx} \rightarrow \frac{\text { UCov }}{=1}\)
Var
\(\operatorname{Var}(\Gamma, \tau)=(\operatorname{Var} \Gamma)+\mathrm{T}\)
Var \((w k \Gamma \tau)=\) dua inl \(: \operatorname{Hom}(\operatorname{Var} \Gamma)(\operatorname{Var}(\Gamma, \tau))\)
```


Let＇s Formalize STLC（Again）

$\begin{array}{r}0 \\ +\quad 2 \\ \hline\end{array}$

data Tm（ Γ ：Ctx）：Type where
var ：Var $\Gamma \rightarrow$ Tm Г
abs ：（ $\tau: \operatorname{Ty}) \rightarrow \operatorname{Tm}(\Gamma, \tau) \rightarrow \operatorname{Tm} \Gamma$ app ：Tm 「 \rightarrow Tm 「 \rightarrow Tm 「

Let＇s Formalize STLC（Again）

$\begin{array}{r}0 \\ -\quad 2 \\ \hline\end{array}$

data Tm（Г ：Ctx）：UCov where
var ：Var $\Gamma \rightarrow$ Tm Г
abs ：（ $\tau: \operatorname{Ty}) \rightarrow \operatorname{Tm}(\Gamma, \tau) \rightarrow \mathrm{Tm} \Gamma$ app ：Tm 「 \rightarrow Tm 「 \rightarrow Tm 「

Let's Formalize STLC (Again)

Let's first consider weakening terms

Let's Formalize STLC (Again)

```
Loc : Ctx \(\rightarrow\) Type
Loc • \(\quad\) T
\(\operatorname{Loc}(\Gamma, \tau)=(\operatorname{Loc} \Gamma)+T\)
```

$$
\begin{aligned}
& \text { wk-Ctx : }(\Gamma: C t x) \rightarrow \text { Ty } \rightarrow \text { Loc } \Gamma \rightarrow C t x \\
& \text { wk-Ctx } \cdot \\
& \text { wk-Ctx } \left.\left(\Gamma, \tau^{\prime}\right) \tau(\operatorname{inr} l)=\left(\Gamma^{\prime}, \tau^{\prime}\right), \tau^{\prime}\right) \\
& \text { wk-Ctx }\left(\Gamma, \tau^{\prime}\right) \tau(\operatorname{inl} l)=\left(\text { wk-Ctx } \Gamma^{\prime} \tau^{\prime} l\right), \tau^{\prime}
\end{aligned}
$$

Let＇s Formalize STLC（Again）

$\begin{array}{r}0 \\ -\quad 2 \\ \hline\end{array}$

```
wk-Var : \forall 「 \tau l, Var 「 -> Var (wk-Ctx 「 \tau l)
wk-Var - \tau l x = abort x
wk-Var (\Gamma , \tau') \tau (inr l) x = inl x
wk-Var (\Gamma , \tau') \tau (inl l) (inr x) = inr x
wk-Var (\Gamma , \tau') \tau (inl l) (inl x) = inl (wk-Var 「 \tau l x)
```


Let's Formalize STLC (Again)

```
wk-Var : \forall Г \tau, Var \Gamma }->\mathrm{ Var (Г , 七)
wk-Var \Gamma \tau = dcoe Var (wk \Gamma \tau)
```

```
\[
\begin{aligned}
& \text { dcoe : }\{\mathrm{A}: \text { Type }\}(F: A \rightarrow \text { UCov) } \\
& \{x \text { y : A\} (p : Hom } x \text { y) } \\
& F x \rightarrow F y
\end{aligned}
\]
```


Let＇s Formalize STLC（Again）

$\begin{array}{r}-\quad 8 \\ +\quad 2 \\ \hline\end{array}$

```
wk-Tm : \forall 「 \tau l, Tm 「 -> Tm (wk-Ctx 「 \tau l)
wk-Tm 「 \tau l (var x) = var (wk-Var 「 \tau l x)
wk-Tm 「 \tau l (abs \tau' t) = abs \tau' (wk-Tm (\Gamma , \tau') \tau (inl l) t)
wk-Tm 「 \tau l (app t t') = app (wk-Tm 「 \tau l t)
    (wk-Tm 「 \tau l t')
```


Let's Formalize STLC (Again)

$\begin{array}{r}-\quad 11 \\ +\quad 2 \\ \hline\end{array}$

wk-Tm : $\forall \Gamma \tau, \operatorname{Tm} \Gamma \rightarrow \operatorname{Tm}(\Gamma, \tau)$
$w k-T m \Gamma \tau=$ dcoe $T m(w k \Gamma \tau)$

Let's Formalize STLC (Again)

That's not fair, though:
I only implemented the outermost weakening in our new theory...right?

Wrong!!!

Let＇s Formalize STLC（Again）

$$
\begin{aligned}
& w k-\operatorname{Var}^{\prime}: \forall \Gamma \tau \tau^{\prime}, \operatorname{Var}(\Gamma, \tau) \rightarrow \operatorname{Var}\left(\Gamma, \tau^{\prime}, \tau\right) \\
& \text { wk-Var' 「 七 } \tau^{\prime}=\text { dcoe } \operatorname{Var}\left(w k ' \Gamma \tau \tau{ }^{\prime}\right) \\
& w k-T m ': ~ \forall \Gamma \tau \tau^{\prime}, \operatorname{Tm}(\Gamma, \tau) \rightarrow \operatorname{Tm}\left(\Gamma, \tau^{\prime}, \tau\right) \\
& \text { wk-Tm' 「 } \left.\tau \tau^{\prime}=\text { dcoe } T m \text { (wk' 「 } \tau \tau^{\prime}\right)
\end{aligned}
$$

Let's Formalize STLC (Again)

```
wk'' : \forall \Gamma \tau \tau', Hom \Gamma (\Gamma , \tau , \tau')
wk''\Gamma \tau \tau' = wk \Gamma \tau o wk (\Gamma , \tau) \tau'
```

wk-Var'' : $\forall \Gamma \tau \tau \tau^{\prime}, \operatorname{Var} \Gamma \rightarrow \operatorname{Var}\left(\Gamma, \tau, \tau^{\prime}\right)$
wk-Var'' $\Gamma ~ \tau ~ \tau^{\prime}=$ dcoe Var (wk'' $\Gamma \tau \tau^{\prime}$)
wk-Tm'' : $\forall \Gamma \tau \tau{ }^{\prime}, \operatorname{Tm} \Gamma \rightarrow \operatorname{Tm}\left(\Gamma, \tau, \tau^{\prime}\right)$
wk-Tm'' 「 $\tau \tau^{\prime}=$ dcoe Tm (wk' 「 $\left.\tau \tau^{\prime}\right)$

Let's Formalize STLC (Again)

- In general, we specify that we want to weaken from Γ to Γ^{\prime} by providing a morphisms from Γ to Γ^{\prime}
- Before, this data was provided by a triple containing a context, location in that context and the type by which to weaken
- dcoe F is the function that executes weakening for the type family F
- In summary: the type theory implemented weakening by arbitrary many variables in arbitrary locations automatically!

Let's Formalize STLC (Again)

-11
$+\quad 2$

Now let's quickly consider weakening our typing derivations
(Note: this is more speculative than what's been shown previously)

Let＇s Formalize STLC（Again）

-11
$+\quad 3$

```
getTy : (\Gamma : Ctx) -> Var \Gamma -> Ty
getTy • x = abort x
getTy (\Gamma , \tau) (inr x) = \tau
getTy (\Gamma , \tau) (inl x) = getTy \Gamma x
getTy (wk 「 \tau) = id (getTy 「) : Hom (\lambda x > getTy 「 x)
(\lambda x }->\mathrm{ getTy ( ( , т) (inl x))
```

Let's Formalize STLC (Again)
data _ __ $\quad(\Gamma: C t x): T m \Gamma \rightarrow T y \rightarrow$ UCov where
var : (x : Var 「)
$\Gamma \vdash \operatorname{var} x \in \operatorname{getTy} \Gamma \mathrm{x}$

```
tabs : {\tau \tau' : Ty} {t : Tm (\Gamma , \tau)}
    (_ : Г , \tau \vdash t \in Т')
    -> ------------------
    tapp : {\tau \tau' : Ty} {t t' : Tm 「}
        (_ : Г \vdash t \in \tau = \tau')
        (_ : Г \vdash t' \in \tau)

Let＇s Formalize STLC（Again）

\(w k-T c \Gamma \tau l(\operatorname{tvar} x) \quad=\operatorname{coe}\left(\lambda \tau^{\prime} \rightarrow_{-} \vdash_{-} \in \tau^{\prime}\right)\)
（wk－getTy \(\Gamma \bar{\tau} l \times\) ）
（tvar（wk－Var 「 \(\tau\) l x））

wk－Tc 「 \(\tau\) l（tapp tc tc＇）＝tapp（wk－Tc 「 \(\left.\tau l^{-} \mathrm{tc}\right)\)
（wk－Tc 「 七 l tc＇）


\section*{Let's Formalize STLC (Again)}
```

wk-Tc : \forall \Gamma \tau {t} {\tau'}, \Gamma \vdash t \in \tau'
\Gamma , \tau \vdash (wk-Tm \Gamma \tau t) \in \tau'
wk-Tc \Gamma \tau l = dcoe (\lambda (\Gamma, t)) \Gamma | t \in T') (\SigmaHom Tm (wk \Gamma \tau) t)

```
( \(\sum\) Hom Tm (wk 「 \(\tau\) ) t : \(\operatorname{Hom}(\Gamma \quad, \mathrm{t})\)
\[
((\Gamma, \tau), \text { dcoe } \operatorname{Tm}(w k \Gamma \tau) t)
\]

\section*{Let's Formalize STLC (Again)}


\section*{Let's Formalize STLC (Again)}
```

weak Tm (wk \Gamma \tau 0 wk (\Gamma , \tau) \tau') : Tm Г -> Tm (\Gamma, \tau, \tau')

```
- This function traverses the term once, and at each variable applies the function inl twice
- We get generic programs for free with
- strong semantic guarantees
- efficient computation

\section*{Let's Formalize STLC (Again)}
- We can internally witness that weakening for Tm and type checking is uniquely determined by Var : Ctx \(\rightarrow\) UCov
- The definition we get for free must be the one we wrote by hand before
- We can use this fact in later proofs!

\section*{So how do we make any of this work?}

Math!!!

\section*{Defining Bicubical Directed Type Theory}
- We define this type theory using categorical semantics
- Types are interpreted as mathematical objects called bicubical sets
- It is an extension of the model of cartesian cubical type theory by Carlo Anguli, Guillaume Brunerie, Thierry Coquand, Favonia, Bob Harper and Dan Licata
- Our approach to augmenting their work with directed paths is based off of the work of Emily Riehl and Mike Shulman that uses bisimplicial sets (as opposed to bicubical sets)
- We construct our universe internally using a method developed by Dan Licata, Ian Orton, Andy Pitts and Bas Spitters

\section*{Defining Bicubical Directed Type Theory}
- Like the cartesian cubical model, our model is constructive
- i.e. everything actually computes
- Our main contribution is the construction of a covariant universe UCov s.t.
- \(A \rightarrow B \simeq\) Homucov \(A B\)
- This equivalence is called directed univalence
- (caveat: we currently only have a constructive proof that \(A \rightarrow B\) is a retract of Homucov A B)

\section*{Our Formalization}
- Our approach to this is based off of that done by lan Orton and Andy Pitts
- Use Agda...
- ...but only П, \(\Sigma\), = w/ uip, T, \(\perp\), Prop
- Build theory as a shallow embedding in this basic dependent type theory

\section*{Our Formalization}
- Types and terms of Agda coincide with the types and terms of our model
- We use _ \(\equiv\) _ to encode the judgmental equality in our model
- More generally, we use Prop to contain judgements of the metatheory of our model
- Precisely corresponds to a categorical model of type theory
- Despite this fact, is \(100 \%\) syntactic

\section*{Our Formalization}

Hom : (A : Type) \(\rightarrow \mathrm{A} \rightarrow \mathrm{A} \rightarrow\) Type
Hom \(A x y=\Sigma p: Z \rightarrow A, p \mathbb{D} \equiv x \times p \mathbb{1} \equiv y\)

\section*{Our Formalization}
```

dcom-dua : }\forall{\begin{array}{lll}{{12:L\mp@code{Level} {\Gamma: Set {1}}}
{(x:\Gamma,2)}
(A B : }\Gamma+\mathrm{ Set

```

```

 ->relCov A
 ->relCovl (duaF x A B f)
 dcom-dua }\times\vec{AB
\

```

```

 (< xpl=\mp@subsup{0}{}{-}->!(tleft-\alpha p\alpha xpl=0)
    ```

```

 fst (snd b
 back-in-time : ((x 0 p) ' 1 == '0) - (y : _) + (x 0 p) y == '0
back-in-time eq y = transport (\h->(x\circp)\ y sh) eq (dimonotonicity\leq(x\circp) y `'1 id)
when the result in is in A, compose in
left-fill:(y : 2) (xpl=0 : x (p ``1) = ``0) -
*eft-fill y xpl=0 =
comA p y a
(\ z p\alpha Coe (Glue-\alpha (inl (back-in-time xpl=0 z))) (t z p\alpha))

```

```

 tleft = tleft-fill ' '1
 O- on \alpha, the composite in A is just t t }\mp@subsup{}{}{1
 left-\alpha:(p\alpha:\alpha)->(xpl=0 : x(p `1) = "
    ```

```

 unglue everyone to B and compose there, agreeing with f (tleft-fill) on xpl = 0
 b':
\alphav(x (p '1) == ``0)
\ z z case (\ p\alpha->\mathrm{ unglue (t z p 人))}
(\ p\alpha xpl=0 ->ap (f (p z)) (fst (snd (tleft-fill z xpl=0)) p\alpha) 。! (unglue-\alpha (t z p\alpha) (inl (back-in-time xpl=0 z z)))))
unglue (fst b
v-elim _ (\ p\alpha'-ap unglue (snd b p\alpha))
unglue-a (fst b) (inl (back-in-time xpl=0 `0)) O!(ap (f (p `0)) (snd (snd (tleft-fill `00 xpl=0)) id)))
uip))

```

\section*{Future Directions}
- Directed Higher Inductive Types
- A general theory for types like Ctx
- Extended "real world" application(s) in verification
- i.e. demonstrate directed type theory actually works and is helpful in "the wild" (e.g. real(ish) compiler, etc...)

\section*{Bicubical Directed Type Theory}
- We've defined a constructive model of type theory that extends cubical type theory with
- Directed paths
- A covariant universe with directed univalence (81.25\%)
- These new features can make formal verification easier
- We still have to develop more of the theory (i.e. DHITs) before we can use it in practice```

