Bicubical Directed Type Theory

Advised by Andrew Appel and Dan Licata

Matthew Weaver

General Examination

@ o

Bicubical Directed Type Theory

Bicubical directed type theory is a constructive model of type theory

It extends cubical type theory with an second notion of path that is
directed

We define a particularly well behaved universe of types in our model and
construct directed univalence for this universe

This Is joint work with Dan Licata

What is it good for?

* Bicubical directed type theory provides a constructive setting for category
theory

 Homotopy/cubical type theory has not only made it easier to formalize
existing proofs in homotopy theory, but inspired new proofs

* Directed type theory could do the same for category theory

What is it good for?

Today we'll focus on one specific application that
seems most relevant to this audience:

formal verification of computational structures

A New Foundation for Formal Verification

 We're at a point where formal verification of real, large-scale software
systems and computational structures is becoming tractable

B

S~ Security. Performance. Proof.

" FOOyverifiea rifl
Software

Toolchain
e sc

nFJ\JILULIVI 1ICAI Wil U\JLMIV\S IS AWAWAGA N EE]E IH LIUULUDIe

|.f'—- S o ““-._.
l '
. -_— [_; i

Security. Performance. Proof.

U

» Kami

wi jon :
Core Spec Cert1oq

A Verified Implementation of ML

I
Vellvm

I
CERTIKOS s

— __..d.

A New Foundation for Formal Verification

 While there has been some improvement, these proof-developments are
unavoidably massive and time-consuming to develop

 The ease of verification is limited by the proof theory used in these
projects

* Directed type theory provides a new setting for these proofs with
primitives that correspond to fundamental concepts in computer science

* This change in foundational theory results in proofs and programs that are
shorter and easier to write

But First:
The Simply Typed Lambda Calculus

(the old-fashioned way)

Let's Formalize STLC

e Let's define the simply typed lambda calculus inside of Agda,

* and then prove that our definition is invariant under weakening:

[F t : T
[, X : T Tt : T

 Warning: This may get a bit ugly

Let's Formalize STLC

data Ty : Type where
A Ty
= 1 Ty - Ty - Ty

data Ctx : Type where
. : Ctx
: Ctx - Ty -» Ctx

Let's Formalize STLC

Var : Ctx - Type Var (Xq : Tq, Xo I Ta, <oy Xn & Tn)

Var e = 1 _

Var (I , t) = (Var ') + T = X1, X, ey Xnj

data Tm (I : Ctx) : Type where Tmt:=
var : Var [- Tm [var X
abs : (T : Ty) - Im (I , T) - Tm I AT .t
app : Im[- Im1[- Im tt

Let's Formalize STLC

getTy : (I : Ctx) » Var I - Ty
getTy o x = abort x

getTy (I' , tT) (1nr Xx)
getTy (I , t) (1nl Xx)

T
getly [X

Let's Formalize STLC

data € ([: Ctx) : Tm I - Ty - Type where

tvar : (x : Var I)
[F var x € getly I X

tabs : {t t'" : Ty} {t : Tm ([, T)}
(: T, Tk t € T1T')

(T FHFtET=T1")
N

[Fapp t t' € T

Let's Formalize STLC

Now let's show everything is invariant under weakening of contexts

Let's Formalize STLC

wk-Var : YT T, Var I - Var (I , T)
wk-Var ' T = 1nl

wk-Tm : Y I t, Tm T - Tm ([, T)

wk-Tm [T (var x) = var (wk-Var I' T x)
wk-Tm I T (app t t') = app (wk-Tm ' T t)

(wk-Tm ' T t')

wk-Tm I Tt (abs tT' t) abs tT' 777 ITm ([, T , T')

wk-Tm (I , t') Tt : Tm (I , T" , T)

Let's Formalize STLC

Loc : Ctx - Type
LOoC e = T
Loc (T , t) = (Loc N + T

wk-Ctx :(I' : Ctx) - Ty » Loc ' » Ctx

wk-Ctx e T L = e | T

wk-Ctx (F , t') Tt (inr 1) = (I, t') , T

wk-Ctx (' , ') T (1nl L) = (wk-Ctx ' T l) , T
wk-Ctx I Tt 1

Let's Formalize STLC

Loc : Ctx - Type
LOoC e = T
Loc (T , t) = (Loc N + T

wk-Ctx :(I' : Ctx) - Ty » Loc ' » Ctx

wk-Ctx e T L = e | T

wk-Ctx (F , t') Tt (inr 1) = (I, t') , T

wk-Ctx (" , t') t (znl 1) = (wk-Ctx I T L) , T
wk-Ctx I Tt L

e — °, T1,...,Th, T, Th+t1, ...

wk-Var :

wk-Var
wk-Var
wk-Var
wk-Var

Let's Formalize STLC

-~ 4 ~

1 X

1nr X

1nl

(wk-Var I' T L x)

wk-Tm :

wk-Tm
wk-Tm

wk-Tm

Let's Formalize STLC

VI T
[T L (var x)
[T L (app € €°)
[T L (abs t' [t)

L, Tm I - Tm (wk-Ctx I T L)

var (wk-Var I' T 1l x)

app (wk-Tm I' T L €)

(wk-Tm [T L t')

abs Tt

(wk-Tm (I

T') T (1nl L) t)

wk-TcC

wk-TcC

wk-TcC
wk-TcC

Let's Formalize STLC

VI tl{t} {'}, Tt e

(Wk-Ctx ' Tt) H (wk-Tm ' T L t) € T

[T L (tvar x)

[T L
[T L

coe (A T' - = E 1T')
(wk-getTy ' T 1 x)
(tvar (wk-Var I Tt L Xx)

tabs (_)
tapp (WK=TE T 1T t¢c)
(wk-Tc I T 1 tc')

Let's Formalize STLC

* \We know the only interesting part of weakening is its action on variables

 The type theory doesn't, resulting in verbose but trivial programs and
proofs

Let's Formalize STLC

What if we want to weaken by multiple variables at once?

 \We can iterate our previously defined weakening functions, which is
inefficient but maintains our proof guarantees

 \We can reimplement a more efficient version and redo all of the proofs

Let's Formalize STLC

 When it comes to weakening, we demonstrate there is an inclusion of the
types in the type families

Var I € Var (I , T) T]m I € Tm ([, T)

e Can we potentially gain insight by comparing this to subtyping?

Var I <: Var (I , 1) ™Tm I <: Tm ([, T)

Let's Formalize STLC

* Let's consider a type theory where we can specity that, for any type family
F : Ctx -» Type,itmustbethecasethatF I <: F ([, T)

 We would like this relation to have congruence rules, like subtyping

e e.g. we can use that we know how to weaken variables to define how to
weaken terms,

e ... and use both of these to define how to weaken typing derivations

Let's Formalize STLC

« We don't want to restrictevery F : Ctx - Type to those where there is
auniquewayforF I <: F (I, T)

e e.g. we could also implement our variables to be reversed (inside-out)

* Therefore this theory must keep track of which proof of this relation we are
using: p : F T <: F (I, T)

e pis a special function specifyinghowtoturnaF IintoaF (I , T)

Let's Formalize STLC

 Thus, in this theory, A <: B has some qualities of subtyping, but is
computationally relevant

 Can we define a theory with a notion that strike this balance between
functions and subtyping? Yes!

Review of Subtyping

o We equip a type theory with a new judgement: A <: B fortypes A and B

t : B
e Example:
record student : Type where record person : Type where
name : String - name : String

birthday : Date
school : String

birthday : Date

Merging Subtyping and Functions

 As | already hinted towards a theory where subtyping looks like functions,
let's be explicit when we use subtyping in our syntax:

Merging Subtyping and Functions

 As | already hinted towards a theory where subtyping looks like functions,
let's be explicit when we use subtyping in our syntax:

t : A A <: B
casta<:s t : B

Merging Subtyping and Functions

 As | already hinted towards a theory where subtyping looks like functions,
let's be explicit when we use subtyping in our syntax:

A <: B
casta<s : A - B

Merging Subtyping and Functions

 What might subtyping look like were it internally visible in the language?

A : Type B : Type
A <: B : Type

Merging Subtyping and Functions

 What might subtyping look like were it internally visible in the language?

p : A<: B
casta<s p : A - B

Merging Subtyping and Functions

 What might subtyping look like were it internally visible in the language?

f : A-B
dua f : A <: B

Merging Subtyping and Functions

 What might subtyping look like were it internally visible in the language?

f : A-B
casta<:p (dua) = T

Merging Subtyping and Functions

 What might subtyping look like were it internally visible in the language?

p : A<: B
dua (casta<:s p) =n p

Merging Subtyping and Functions

 What might subtyping look like were it internally visible in the language?

A : Type B : Type
A <: B : Type

p : A<: B f : A-B
casta<s p : A - B dua f : A <: B
p : A<: B f: A-B

dua (casta<:z p) =n P casta<:s (dua f) =g f

Merging Subtyping and Functions

e Subtyping is now just a wrapper for the function type...
e ...with no additional structure or payoff.

e Yet.

Beyond Subtyping

e [et's think back to the STLC:

 Using this odd perspective of subtyping, we've proven that, V. [T,

Var I <: Var (I , 1) Tm I <: Tm ([, T)

 As mentioned before, we always want that, forevery F : Ctx - Type,

Beyond Subtyping

e Let's extend our theory to make this restriction possible!

* As is typical In dependent type theory, let's not distinguish types and terms

A : Type X A y A
X <: Yy : Type

Beyond Subtyping

e Let's extend our theory to make this restriction possible!

* As is typical In dependent type theory, let's not distinguish types and terms

A : Type X A y A
Hom X y : Type

 We call terms of Hom X Yy "morphisms"” or "directed paths" from X to y

Beyond Subtyping

We equip every type with a proof-relevant binary relation that is reflexive

1d X : Hom X X

Beyond Subtyping

We equip every type with a proof-relevant binary relation that is reflexive,
transitive

Xy z : A p : Hom X vy g : Hom vy z
D o g : Hom X z

Beyond Subtyping

We equip every type with a proof-relevant binary relation that is reflexive,
transitive and congruent

X A y A
f: A-B p : Hom X y

ap f p : Hom (f x) (T y)

 The type theory insures that all functions preserve this relation

Nontrivial Morphisms

 Now that we have morphisms in all types, let's define datatypes where
this morphism structure is nontrivial

 The Idea: allow inductive types to include constructors for both terms and
the morphisms

* The induction principle has cases corresponding to both kinds of
constructors

Nontrivial Morphisms

data Ctx : Type where Ctx-rec : (A : Type)
. : Ctx (ci1 : A)
, 1+ Ctx - Ty - Ctx (c2 : A>Ty - A)
wk : VI t, Hom I (I , T) (cs : Va T, Hom a (cz2 a 1))
Ctx -» A

Ctx-rec A C1 C2 C3 * =g C1
Ctx-rec A c1 c2 ¢c3 (I', T) = c2 (Ctx-rec A c1 c2c3101) T

ap (Ctx-rec A c1 c2 ¢c3) (wk T 1) = c3 (Ctx-rec A c1 c2 ¢c3TI) T

Nontrivial Morphisms

data Ctx : Type where Ctx-rec : (A : Type)
. : Ctx (ci1 : A)
, 1+ Ctx - Ty - Ctx (c2 : A>Ty - A)
wk : VI t, Hom I (I , T) (cs : VaTt, Hom a (cz2 a 1))
Ctx -» A

 Note there are no cases in both the definition and the recursion principle
corresponding to the fact morphisms are reflexive, transitive and

congruent

What's up with ap?

X A y A
f : A-B p : HOm X vy

ap f p : Hom (f x) (f y)
* This rule states that everything is covariant:

Given A A" B : Type,andp : Hom A A",

ap (A X -> (X->B)) p : Hom (A - B) (A" - B)

) .
What's up with ap?
* |n this framework, morphisms in Type can be thought of as describing

how two types are related, and are not (just) functions

e GivenF : Type - Type, ap F isthe proof that F sends related
iInputs to related outputs

 We'd like to define a universe of types where morphisms are functions
e Let's call it UCov

e GivenF : UCov - UCov,ap Fmapsafunctonf : A - Btoa
functionap F f : F A - F B

Universe for Subtyping

 InorderforF : A - UCov to typecheck, F must be covariant
B <: B

e eg. AN X » (A - X) : UCov - UCov typechecks A L2B< ALEB

* eg.A X - (X - B) : UCov - UCov does not typecheck _)x T

e As morphisms coincide with functions, UCov is equipped with the following:

dua : {A B : UCov} dcoe : {A : Type} (F : A - UCov)
(A - B) {xy : A} (p : Hom X vy)

Universe for Subtyping

dcoe : {A : Type} (F : A - UCov)
{xy : A} (p : Hom x vy)

* As functions are morphisms in UCov, this is the same as saying:

F : A - UCov Hom X vy
Hom (F x) (F vy)

Universe for Subtyping

dcoe : {A : Type} (F : A - UCov)
{xy : A} (p : Hom x vy)

* As functions are morphisms in UCov, this is the same as saying:

F : A - UCov Hom X vy
F X <: Fy

Universe for Subtyping

dcoe : {A : Type} (F : A - UCov)
{xy : A} (p : Hom x vy)

* As functions are morphisms in UCov, this is the same as saying:

F : Ctx -» UCov
FI<: F (T, 1)

Universe for Subtyping

* We can also prove that UCov is closed under various type-formers:

T : UCov 1 : UCov
A : UCov B : UCov A : UCov B : UCov
A x B : UCov A+ B : UCov

F : UCov - UCov polynomial
u F : UCov

(i.e. inductive types)

Universe for Subtyping

A : UCov B : UCov
A x B : UCov

 Because we have dcoe for UCov, this closure property is a proof that
there is a unigue solution to the following:

A <: A' B <: B
A x B <: A" x B'

* Thus, by working in UCov, we get the congruence properties we wanted

The Payoff

Let's check out what it's like to use this type theory

Let's Formalize STLC (Again)

data Ty : Type where
A Ty
= 1 Ty » Ty » Ty

Let's Formalize STLC (Again)

data Ty : UCov where
A Ty
= 1 Ty » Ty » Ty

Let's Formalize STLC (Again)

data Ctx : Type where
. : Ctx
: Ctx - Ty - (Ctx

Let's Formalize STLC (Again)

data Ctx : Type where
. : CtXx
, + Ctx » Ty -» Ctx

Let's Formalize STLC (Again)

Var : Ctx - Type
Var e = 1
Var (I , t) = (Var) + T

Let's Formalize STLC (Again)

Var : Ctx - UCo

V :

Var e
Var (I , T)
(wk T 1)

1

(

Var ') + T

: Hom (Var I')

(Var (I

, T))

Let's Formalize STLC (Again)

data Tm (I : Ctx) : Type where
var : Var [- Tm I
abs : (t : Ty) » Tm ([, T) » Tm I
app : Im[- ImT[- ITm

Let's Formalize STLC (Again)

data Tm (I : Ctx) : UCov where
var : Var I - Tm I
abs : (t : Ty) » Tm ([, T) » Tm I
app : Im[- ImT[- ITm

Let's Formalize STLC (Again)

Let's first consider weakening terms

Let's Formalize STLC (Again)

Loc : Ctx - Type
LoC e =T
Loc (I , T) (Loc ') + T

wk-Ctx : (I : Ctx) » Ty » Loc ' » Ctx

wk-Ctx e T L = e , T

wk-Ctx () T (1nr 1) (r , t') , T
wk-Ctx (T (1nl 1) (wk-Ctx I T L) , Tt

[, T'
[, T')

Let's Formalize STLC (Again)

wk-Var : YT t L, Var I - Var (wk-Ctx I T 1)
wk-Var « T L X = abort X

wk-Var (I , t') Tt (1nr 1) x = 1nl
wk-Var (I' , t') T (1nl 1) (1nr x)
wk-Var (I T') T (1nl 1) (inl Xx)

1nr X
inl (wk-Var I Tt L x)

| I | P

Let's Formalize STLC (Again)

[- Var ([, 1)

wk-Var : V T r
T = Var (wk I T)

T, Va
wk-Var T dcoe

dcoe : {A : Type} (F : A - UCov)
{xy : A} (p : Hom x vy)

Let's Formalize STLC (Again)

wk-Tm
wk-Tm
wk-Tm
wk-Tm

O/'Q

, Im T - Tm (wk-Ctx I T 1)

r X)
s T' t)
pt t')

var (wk-Var I T 1 x)
abs t' (wk-Tm (I , ') T (inl 1) t)
app (wk-Tm I' T L t)

(Wwk-Tm I T U t')

Let's Formalize STLC (Again)

wk-Tm : YT t, Tm T - Tm ([, T)
wk-Tm I T = dcoe Tm (wk I T)

[AaA \[AA [AA
A A A

Let's Formalize STLC (Again)

That's not fair, though:
| only implemented the outermost weakening in our new theory...right?

Wrong!!!

Let's Formalize STLC (Again)

X A y A
wk' : YT tT', Hom (F , T) (I, T T) f:A-B p : Hom x vy

wk'* 'ttt =ap (AT -1, 1) (WwkT T
ap |) |) ap f p : Hom (f x) (f y)

wk-Var' : VI t <, Var (I , t) - Var (I , t° , T)
wk-Var' ' T t' = dcoe Var (wk' I T t')

wk-Tm" : Vv I t<t, Tm(F, t)>Tm (FC, T , T)
wk-Tm"'" ' T t' = dcoe Tm (wk' ' T T')

Let's Formalize STLC (Again)

wk'" : VT T <t', Hom T (' , T , T')

wk'" ' Tt =wkl T owk (I, 1) T
wk-Var'' : VI t <, Var I - Var (I , T , 1')
wk-Var'' ' T t' = dcoe Var (wk''' I T 1t')
wk-Tm'' : VI t<', TmT - Tm ([, T T')

wk-Tm'" ' T t' = dcoe Tm (wk' ' T 1)

Let's Formalize STLC (Again)

* |In general, we specify that we want to weaken from [to [' by providing a
morphisms from [to [’

* Before, this data was provided by a triple containing a context, location
In that context and the type by which to weaken

 dcoe F isthe function that executes weakening for the type family F

* In summary: the type theory implemented weakening by arbitrary many
variables in arbitrary locations automatically!

Let's Formalize STLC (Again)

Now let's quickly consider weakening our typing derivations

(Note: this is more speculative than what's been shown previously)

Let's Formalize STLC (Again)

getly :
getly -

getly
getly

getly (wk I

AA
<

X =

(I :

Ctx) - Var I - Ty
abort x

., T) (1nr x) =T

([
(r ,
(wk T

T) (inl x) =
1) = id (getTy TI')

getly [X
. Hom (A X - getTy ' Xx)

(A x » getTy (I ,

T) (1nl X))

AA
<~

Let's Formalize STLC (Again)

data € (I : Ctx) : Tm I - Ty - UCov where

tvar : (x : Var I)
[F var x € getly I X

tabs : {t t' : Ty} {t : Tm ([, T)}
(: T, Tk t € T1T')

tapp : {t t' : Ty} {t t' : Tm I'}
: teET=T1")
t' € 1)

—1 ~1
T T

[Fapp t t' € T

Let's Formalize STLC (Again)

wk-Tc : VI © U {t} {t'}, Tt €T

(Wk-Ctx ' Tt) H (wk-Tm ' T L t) € T

wk-Tc ' T L (tvar Xx) = coe (AT - F €71")

(wk-getTy I' T L x)

(tvar (wk-Var I T L X))
wk-Tc ' T L (tabs tc) = tabs (wk-Tc (I ,) T (inl 1) tc)
wk-Tc I T L (tapp tc tc') = tapp (wk-Tc I' T U tc)

(wk-Tc I T L tc')

Let's Formalize STLC (Again)

wk-Tc : VI © {t} {t'}, -t € T

wk-Tc Tt L =dcoe (A (T , t) T FTET)

(XHom Tm (wk ' t) t : Hom (I , 1)
((IF , t) , dcoe Tm (wk ' T) t)

A EE N S EE N, S EE N, S EE Ah EE A\,

Let's Formalize STLC (Again)

B Agda || Directed Agda

60
45
30

15

Lines of Code

Let's Formalize STLC (Again)

weak Tm (wk ' T o wk (T, T) ') : Tm I > Tm (I, T, T")

* This function traverses the term once, and at each variable applies the
function 1nl twice

 \We get generic programs for free with
 strong semantic guarantees

e efficient computation

Let's Formalize STLC (Again)

* We can internally witness that weakening for Tm and type checking is
uniquely determined by Var : Ctx - UCov

* The definition we get for free must be the one we wrote by hand before

* \We can use this fact in later proofs!

So how do we make
any of this work?

Defining Bicubical Directed Type Theory

* \We define this type theory using categorical semantics
* Types are interpreted as mathematical objects called bicubical sets

* |t is an extension of the model of cartesian cubical type theory by Carlo Anguli,
Guillaume Brunerie, Thierry Coquand, Favonia, Bob Harper and Dan Licata

* Qur approach to augmenting their work with directed paths is based off of the
work of Emily Riehl and Mike Shulman that uses bisimplicial sets (as opposed

to bicubical sets)

* We construct our universe internally using a method developed by Dan Licata,
lan Orton, Andy Pitts and Bas Spitters

Defining Bicubical Directed Type Theory

 Like the cartesian cubical model, our model is constructive
* |.e. everything actually computes

 Our main contribution is the construction of a covariant universe UCov s.1.
e A - B = Homycov A B
* This equivalence Is called directed univalence

e (caveat: we currently only have a constructive proofthat A - Bis a
retract of Homycov A B)

Our Formalization

* QOur approach to this is based off of that done by lan Orton and Andy Pitts

 Use Agda...
e ..butonlyIl, 2, =w/ulp, T, 1, Prop

* Build theory as a shallow embedding in this basic dependent type theory

Our Formalization

* Types and terms of Agda coincide with the types and terms of our model

« Weuse = toencode the judgmental equality in our model

 More generally, we use Prop to contain judgements of the metatheory
of our model

* Precisely corresponds to a categorical model of type theory

* Despite this fact, is 100% syntactic

Our Formalization

Hom : (A : Type) - A - A - Type
Hom AXy=2p :2-A, p0=xxpl=y

Our Formalization

dcom-dua : Y {11 12 : Level} {I : Set 11}
(x : [= 2)
(AB : I - Set 12)
(T : (6 :T7) -AB -+ B 8)

-+ relCov A
- relCev E
-+ relCovl (duaF x A B)
dcom-dua x A B f dcomA dcomB pa t b =
glue
(v-elimd@l (\ xpl=6 - fst (tleft xpl=0))
(\ xpl=1 - fst b'))
(fst b' ,
v-elimd@l (\ xpl=0 -» st (snd b') (inr xpl=@))
(\ xpl=1 » id)) ,
(\ po - qlue-cong
(A= (v-elimdOl _
(\ xpl=0 - | (tleft-a pa xpl=0))
(\ xpl=1 » fst (snd b') (inl pa) = unglue-a (t "1 pa) (inr xpl=1))))
(fst (snd b') (inl pa)) e Gluen (t "1 pa)) where
back-in-time : {((x 0 p) "1 == ""0) = (y:)= (xo0op)y=="0

back-in-time eq y = transport (\ h = (x ¢ p) v = h) eq (dimonotonicity= (x o p) v "1 id)

-- when the result in 1s in A, compose in A
tleft-fill : (y : 2) (xpl=C : x (p "'1) = "'0) =
tleft-fill y xpl=C€ =

dcomA p ¥ a

(\ z pa = coe (Glue-a (inl (back-in-time xpl=0 z))) (Tt z pa))
(coe (Glue-a (inl (back-in-time xpl=0 “°0))) (fst b) ,
(A pa - ({ap (coe (Glue-a _ _ _ _ (inl _))) (snd b pa)) ¢ ap (\ h + (coe (Glue-a _ _ _ _ (inl h)) (t "' pa))) uip)))

tleft = tleft-fill "1

- on a, the composite 1n A 1s just t 1
tleft-aa : (pa : a) - (xpl=0 : x(p "'1) = ""9) -
fst (tleft xpl=0) == coe (Glue-a (inl xpl=0)) (t " "1 pa)

tleft-a pa xpl = (ap (\ h = coe (Glue-a _ __ _ (inl h)) (t “"1 pa)) uip) = | (fst (snd (tleft xpl)) pa)

-- unglue everyone to B and compose there, agreeing with f (tleft-fill) on xpl =0
b* : £\ (b' : B (p ""1)) » _
b' = dcomB p "1
(a v (x (p "71) == "70))
((\ z - case (\ pa = unglue (t z pa))
(\ xp1=0 » T (p z) (fst (tleft-fill z xpl=0)))

(\ pax xpl=60 - ap (f (p z)) (fst (snd (tleft-fill z xpl=0)) pa) o ! (unglue-a (t z pa) (inl (back-in-time xpl=0 z)))

(unglue (fst b)
v-elim _ (\ px - ap unglue (snd b pa))

(\ xpl=0 -+ unglue-a (fst b) (inl (back-in-time xpl=E '@)) = ! (ap (f (p "'@)) (snd (snd (tleft-fill

(\ _ _ —uip))

'O xpl=0)) id))

)))

Future Directions

* Directed Higher Inductive Types
* A general theory for types like Ctx
 Extended "real world" application(s) in verification

* |.e. demonstrate directed type theory actually works and is helpful in
"the wild" (e.g. real(ish) compiler, etc...)

Bicubical Directed Type Theory

 \We've defined a constructive model of type theory that extends cubical
type theory with

 Directed paths
e A covariant universe with directed univalence (81.25%)
e These new features can make formal verification easier

* We still have to develop more of the theory (i.e. DHITs) before we can use
It In practice

