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Bicubical Directed Type Theory

• Bicubical directed type theory is a constructive model of type theory


• It extends cubical type theory with an second notion of path that is 
directed


• We define a particularly well behaved universe of types in our model and 
construct directed univalence for this universe


• This is joint work with Dan Licata



What is it good for?

• Bicubical directed type theory provides a constructive setting for category 
theory


• Homotopy/cubical type theory has not only made it easier to formalize 
existing proofs in homotopy theory, but inspired new proofs


• Directed type theory could do the same for category theory



What is it good for?

Today we'll focus on one specific application that 

seems most relevant to this audience: 

formal verification of computational structures



• We're at a point where formal verification of real, large-scale software 
systems and computational structures is becoming tractable 

A New Foundation for Formal Verification
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A New Foundation for Formal Verification

• While there has been some improvement, these proof-developments are 
unavoidably massive and time-consuming to develop


• The ease of verification is limited by the proof theory used in these 
projects


• Directed type theory provides a new setting for these proofs with 
primitives that correspond to fundamental concepts in computer science


• This change in foundational theory results in proofs and programs that are 
shorter and easier to write



But First:  
The Simply Typed Lambda Calculus

(the old-fashioned way)



Let's Formalize STLC

• Let's define the simply typed lambda calculus inside of Agda,


• and then prove that our definition is invariant under weakening:

Γ ⊢ t : τ
Γ, x : τ' ⊢ t : τ

• Warning: This may get a bit ugly



Let's Formalize STLC

data Ctx : Type where 
  ∙   : Ctx 
  _,_ : Ctx → Ty → Ctx

data Ty : Type where 
  A   : Ty 
  _⇒_ : Ty → Ty → Ty



Let's Formalize STLC

data Tm (Γ : Ctx) : Type where 
  var : Var Γ → Tm Γ 
  abs : (τ : Ty) → Tm (Γ , τ) → Tm Γ 
  app : Tm Γ → Tm Γ → Tm Γ

Var : Ctx → Type 
Var ∙       = ⊥ 
Var (Γ , τ) = (Var Γ) + ⊤

Tm t :=

           | var x

           | λ τ . t

           | t t' 

Var (x₁ : τ₁, x₂ : τ₂, ..., xn : τn) 

                            := {x₁, x₂, ..., xn}



Let's Formalize STLC

getTy : (Γ : Ctx) → Var Γ → Ty 
getTy ∙ x = abort x 
getTy (Γ , τ) (inr x) = τ 
getTy (Γ , τ) (inl x) = getTy Γ x



Let's Formalize STLC
data _⊢_∈_ (Γ : Ctx) : Tm Γ → Ty → Type where 

  tvar : (x : Var Γ)  
       → ----------------------------  
         Γ ⊢ var x ∈ getTy Γ x  

  tabs : {τ τ' : Ty} {t : Tm (Γ , τ)}  
         (_ : Γ , τ ⊢ t ∈ τ') 
       → ---------------------------- 
         Γ ⊢ (abs τ t) ∈ τ ⇒ τ' 

  tapp : {τ τ' : Ty} {t t' : Tm Γ} 
         (_ : Γ ⊢ t ∈ τ ⇒ τ') 
         (_ : Γ ⊢ t' ∈ τ) 
       → ----------------------------  
         Γ ⊢ app t t' ∈ τ'



Let's Formalize STLC

Now let's show everything is invariant under weakening of contexts



Let's Formalize STLC

wk-Var : ∀ Γ τ, Var Γ → Var (Γ , τ) 
wk-Var Γ τ = inl

wk-Tm : ∀ Γ τ, Tm Γ → Tm (Γ , τ) 
wk-Tm Γ τ (var x)    = var (wk-Var Γ τ x) 
wk-Tm Γ τ (app t t') = app (wk-Tm Γ τ t) 
                           (wk-Tm Γ τ t') 
wk-Tm Γ τ (abs τ' t) = abs τ' ???     : Tm (Γ , τ , τ') 

                   wk-Tm (Γ , τ') τ t : Tm (Γ , τ' , τ)  



Let's Formalize STLC
Loc : Ctx → Type 
Loc ∙       = ⊤ 
Loc (Γ , τ) = (Loc Γ) + ⊤

wk-Ctx :(Γ : Ctx) → Ty → Loc Γ → Ctx 
wk-Ctx ∙        τ  l       = ∙ , τ 
wk-Ctx (Γ , τ') τ (inr l)  = (Γ , τ') , τ 
wk-Ctx (Γ , τ') τ (inl l)  = (wk-Ctx Γ τ l) , τ'

Γ = ∙, τ1,...,τn,τn+1,...

l
wk-Ctx Γ τ l

∙, τ1,...,τn,τn+1,...
τ



Let's Formalize STLC
Loc : Ctx → Type 
Loc ∙       = ⊤ 
Loc (Γ , τ) = (Loc Γ) + ⊤

wk-Ctx :(Γ : Ctx) → Ty → Loc Γ → Ctx 
wk-Ctx ∙        τ  l       = ∙ , τ 
wk-Ctx (Γ , τ') τ (inr l)  = (Γ , τ') , τ 
wk-Ctx (Γ , τ') τ (inl l)  = (wk-Ctx Γ τ l) , τ'

Γ = ∙, τ1,...,τn,τn+1,...

l
wk-Ctx Γ τ l

∙, τ1,...,τn, τn+1,...τ,



Let's Formalize STLC

wk-Var : ∀ Γ τ l, Var Γ → Var (wk-Ctx Γ τ l) 
wk-Var ∙ τ l x = abort x 
wk-Var (Γ , τ') τ (inr l) x = inl x 
wk-Var (Γ , τ') τ (inl l) (inr x) = inr x 
wk-Var (Γ , τ') τ (inl l) (inl x) = inl (wk-Var Γ τ l x)



Let's Formalize STLC

wk-Tm : ∀ Γ τ l, Tm Γ → Tm (wk-Ctx Γ τ l) 
wk-Tm Γ τ l (var x)    = var (wk-Var Γ τ l x) 
wk-Tm Γ τ l (app t t') = app (wk-Tm Γ τ l t) 
                             (wk-Tm Γ τ l t') 
wk-Tm Γ τ l (abs τ' t) = abs τ' (wk-Tm (Γ , τ') τ (inl l) t)



Let's Formalize STLC

wk-Tc : ∀ Γ τ l {t} {τ'}, Γ ⊢ t ∈ τ'  
      → ------------------------------------- 
        (wk-Ctx Γ τ l) ⊢ (wk-Tm Γ τ l t) ∈ τ' 

wk-Tc Γ τ l (tvar x)      = coe (λ τ' → _ ⊢ _ ∈ τ') 
                                (wk-getTy Γ τ l x) 
                                (tvar (wk-Var Γ τ l x)) 
wk-Tc Γ τ l (tabs tc)     = tabs (wk-Tc (Γ , _) τ (inl l) tc)  
wk-Tc Γ τ l (tapp tc tc') = tapp (wk-Tc Γ τ l tc) 
                                 (wk-Tc Γ τ l tc')



Let's Formalize STLC

• We know the only interesting part of weakening is its action on variables


• The type theory doesn't, resulting in verbose but trivial programs and 
proofs



Let's Formalize STLC

What if we want to weaken by multiple variables at once?

• We can iterate our previously defined weakening functions, which is 
inefficient but maintains our proof guarantees 


• We can reimplement a more efficient version and redo all of the proofs



Let's Formalize STLC
• When it comes to weakening, we demonstrate there is an inclusion of the 

types in the type families

Var Γ ⊆ Var (Γ , τ) Tm Γ ⊆ Tm (Γ , τ)

• Can we potentially gain insight by comparing this to subtyping?

Var Γ <: Var (Γ , τ) Tm Γ <: Tm (Γ , τ)



Let's Formalize STLC

• Let's consider a type theory where we can specify that, for any type family 
F : Ctx → Type, it must be the case that F Γ <: F (Γ , τ)


• We would like this relation to have congruence rules, like subtyping


• e.g. we can use that we know how to weaken variables to define how to 
weaken terms,


• ... and use both of these to define how to weaken typing derivations



Let's Formalize STLC

• We don't want to restrict every F : Ctx → Type to those where there is 
a unique way for F Γ <: F (Γ , τ)


• e.g. we could also implement our variables to be reversed (inside-out)


• Therefore this theory must keep track of which proof of this relation we are 
using:   p : F Γ <: F (Γ , τ)


•  p is a special function specifying how to turn a F Γ into a F (Γ , τ)



Let's Formalize STLC

• Thus, in this theory, A <: B has some qualities of subtyping, but is 
computationally relevant


• Can we define a theory with a notion that strike this balance between 
functions and subtyping? Yes!



Review of Subtyping

• We equip a type theory with a new judgement: A <: B for types A and B

• Example:

t : A   A <: B
t : B

record person : Type where 
  name     : String 
  birthday : Date 

record student : Type where 
  name     : String 
  birthday : Date 
  school   : String 

<: 



Merging Subtyping and Functions

• As I already hinted towards a theory where subtyping looks like functions, 
let's be explicit when we use subtyping in our syntax:

t : A    A <: B
t : B
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Merging Subtyping and Functions

• As I already hinted towards a theory where subtyping looks like functions, 
let's be explicit when we use subtyping in our syntax:

A <: B
castA<:B : A → B



Merging Subtyping and Functions
• What might subtyping look like were it internally visible in the language?

A : Type    B : Type
A <: B : Type



Merging Subtyping and Functions

p : A <: B
castA<:B p : A → B

• What might subtyping look like were it internally visible in the language?



Merging Subtyping and Functions

f : A → B
dua f : A <: B

• What might subtyping look like were it internally visible in the language?



Merging Subtyping and Functions

f : A → B
castA<:B (dua f) ≡β f

• What might subtyping look like were it internally visible in the language?



Merging Subtyping and Functions

p : A <: B
dua (castA<:B p) ≡η p

• What might subtyping look like were it internally visible in the language?



Merging Subtyping and Functions

p : A <: B
castA<:B p : A → B

f : A → B
dua f : A <: B

f : A → B
castA<:B (dua f) ≡β f

p : A <: B
dua (castA<:B p) ≡η p

• What might subtyping look like were it internally visible in the language?

A : Type    B : Type
A <: B : Type



Merging Subtyping and Functions

• Subtyping is now just a wrapper for the function type...


• ...with no additional structure or payoff.


• Yet.



Beyond Subtyping
• Let's think back to the STLC:


• Using this odd perspective of subtyping, we've proven that, ∀ Γ τ,

Var Γ <: Var (Γ , τ)  Tm Γ <: Tm (Γ , τ)

• As mentioned before, we always want that, for every F : Ctx → Type,

 F Γ <: F (Γ , τ)



Beyond Subtyping
• Let's extend our theory to make this restriction possible!


• As is typical in dependent type theory, let's not distinguish types and terms

A : Type    x : A    y : A
x <: y : Type



Beyond Subtyping
• Let's extend our theory to make this restriction possible!


• As is typical in dependent type theory, let's not distinguish types and terms

A : Type    x : A    y : A
Hom x y : Type

• We call terms of Hom x y "morphisms" or "directed paths" from x to y



Beyond Subtyping

     
x : A

id x : Hom x x

We equip every type with a proof-relevant binary relation that is reflexive, 
transitive and congruent



Beyond Subtyping

x y z : A    p : Hom x y    q : Hom y z    
p ∘ q : Hom x z

We equip every type with a proof-relevant binary relation that is reflexive, 
transitive and congruent



Beyond Subtyping

• The type theory insures that all functions preserve this relation

x : A         y : A     
f : A → B    p : Hom x y

ap f p : Hom (f x) (f y)

We equip every type with a proof-relevant binary relation that is reflexive, 
transitive and congruent



Nontrivial Morphisms

• Now that we have morphisms in all types, let's define datatypes where 
this morphism structure is nontrivial


• The Idea: allow inductive types to include constructors for both terms and 
the morphisms


• The induction principle has cases corresponding to both kinds of 
constructors



data Ctx : Type where 
  ∙   : Ctx 
  _,_ : Ctx → Ty → Ctx 
  wk  : ∀ Γ τ, Hom Γ (Γ , τ) 

 

Ctx-rec : (A  : Type) 
    (c₁ : A) 
    (c₂ : A → Ty → A) 

  → ------------------ 
    Ctx → A

            Ctx-rec A c₁ c₂ c₃ ∙ ≡β c₁

ap (Ctx-rec A c₁ c₂ c₃) (wk Γ τ) ≡β c₃ (Ctx-rec A c₁ c₂ c₃ Γ) τ

Nontrivial Morphisms

      Ctx-rec A c₁ c₂ c₃ (Γ , τ) ≡β c₂ (Ctx-rec A c₁ c₂ c₃ Γ) τ

    (c₃ : ∀ a τ, Hom a (c₂ a τ)) 
                      ---------- 



data Ctx : Type where 
  ∙   : Ctx 
  _,_ : Ctx → Ty → Ctx 
  wk  : ∀ Γ τ, Hom Γ (Γ , τ) 

 

Ctx-rec : (A  : Type) 
    (c₁ : A) 
    (c₂ : A → Ty → A) 
    (c₃ : ∀ a τ, Hom a (c₂ a τ)) 
  → ---------------------------- 
    Ctx → A

Nontrivial Morphisms

• Note there are no cases in both the definition and the recursion principle 
corresponding to the fact morphisms are reflexive, transitive and 
congruent



What's up with ap?

• This rule states that everything is covariant:

ap (λ X → (X → B)) p : Hom (A → B) (A' → B)

A <: A'
A → B <: A' → B

Given A A' B : Type, and p : Hom A A',

x : A         y : A     
f : A → B    p : Hom x y

ap f p : Hom (f x) (f y)



What's up with ap?
• In this framework, morphisms in Type can be thought of as describing 

how two types are related, and are not (just) functions


• Given F : Type → Type, ap F is the proof that F sends related 
inputs to related outputs


• We'd like to define a universe of types where morphisms are functions


• Let's call it UCov 


• Given F : UCov → UCov, ap F maps a function f : A → B to a 
function ap F f : F A → F B



Universe for Subtyping

dcoe : {A : Type} (F : A → UCov)  
       {x y : A} (p : Hom x y) 
     → ------------------------- 
       F x → F y

dua : {A B : UCov}  
      (A → B) 
    → ------------ 
      Hom A B

• In order for F : A → UCov to typecheck, F must be covariant


• e.g. λ X → (A → X) : UCov → UCov typechecks


• e.g. λ X → (X → B) : UCov → UCov does not typecheck


• As morphisms coincide with functions, UCov is equipped with the following:

B <: B'
A → B <: A → B'

A <: A'
A → B <: A' → B



Universe for Subtyping
dcoe : {A : Type} (F : A → UCov)  
       {x y : A} (p : Hom x y) 
     → ------------------------- 
       F x → F y

• As functions are morphisms in UCov, this is the same as saying:

F : A → UCov    Hom x y
Hom (F x) (F y)



Universe for Subtyping
dcoe : {A : Type} (F : A → UCov)  
       {x y : A} (p : Hom x y) 
     → ------------------------- 
       F x → F y

• As functions are morphisms in UCov, this is the same as saying:

F : A → UCov    Hom x y
F x <: F y



Universe for Subtyping
dcoe : {A : Type} (F : A → UCov)  
       {x y : A} (p : Hom x y) 
     → ------------------------- 
       F x → F y

• As functions are morphisms in UCov, this is the same as saying:

F : Ctx → UCov
F Γ <: F (Γ , τ)



Universe for Subtyping
• We can also prove that UCov is closed under various type-formers:

A : UCov    B : UCov
A × B : UCov

A : UCov    B : UCov
A + B : UCov

⊤ : UCov ⊥ : UCov

F : UCov → UCov polynomial
μ F : UCov

(i.e. inductive types)



Universe for Subtyping

• Because we have dcoe for UCov, this closure property is a proof that 
there is a unique solution to the following:

A : UCov    B : UCov
A × B : UCov

A <: A'    B <: B'
A × B <: A' × B'

• Thus, by working in UCov, we get the congruence properties we wanted



The Payoff

Let's check out what it's like to use this type theory



Let's Formalize STLC (Again)

data Ty : Type where 
  A   : Ty 
  _⇒_ : Ty → Ty → Ty

☹

+  0
-  0



Let's Formalize STLC (Again)

data Ty : UCov where 
  A   : Ty 
  _⇒_ : Ty → Ty → Ty

😊

+  0
-  0



Let's Formalize STLC (Again)

data Ctx : Type where 
  ∙   : Ctx 
  _,_ : Ctx → Ty → Ctx

☹

+  0
-  0



Let's Formalize STLC (Again)

data Ctx : Type where 
  ∙   : Ctx 
  _,_ : Ctx → Ty → Ctx 
  wk  : ∀ Γ τ, Hom Γ (Γ , τ) 

😊

+  1
-  0



Let's Formalize STLC (Again)

☹

+  1
-  0

Var : Ctx → Type 
Var ∙        = ⊥ 
Var (Γ , τ)  = (Var Γ) + ⊤



Let's Formalize STLC (Again)

Var : Ctx → UCov 
Var ∙        = ⊥ 
Var (Γ , τ)  = (Var Γ) + ⊤ 
Var (wk Γ τ) = dua inl    : Hom (Var Γ) (Var (Γ , τ))

😊

+  2
-  0



Let's Formalize STLC (Again)

data Tm (Γ : Ctx) : Type where 
  var : Var Γ → Tm Γ 
  abs : (τ : Ty) → Tm (Γ , τ) → Tm Γ 
  app : Tm Γ → Tm Γ → Tm Γ

☹

+  2
-  0



Let's Formalize STLC (Again)

😊

data Tm (Γ : Ctx) : UCov where 
  var : Var Γ → Tm Γ 
  abs : (τ : Ty) → Tm (Γ , τ) → Tm Γ 
  app : Tm Γ → Tm Γ → Tm Γ

+  2
-  0



Let's Formalize STLC (Again)
+  2
-  0

Let's first consider weakening terms



Let's Formalize STLC (Again)

☹

+  2
-  0

Loc : Ctx → Type 
Loc ∙        = ⊤ 
Loc (Γ , τ)  = (Loc Γ) + ⊤

wk-Ctx : (Γ : Ctx) → Ty → Loc Γ → Ctx 
wk-Ctx ∙        τ  l       = ∙ , τ 
wk-Ctx (Γ , τ') τ (inr l)  = (Γ , τ') , τ 
wk-Ctx (Γ , τ') τ (inl l)  = (wk-Ctx Γ τ l) , τ'



Let's Formalize STLC (Again)

wk-Var : ∀ Γ τ l, Var Γ → Var (wk-Ctx Γ τ l) 
wk-Var ∙ τ l x = abort x 
wk-Var (Γ , τ') τ (inr l) x = inl x 
wk-Var (Γ , τ') τ (inl l) (inr x) = inr x 
wk-Var (Γ , τ') τ (inl l) (inl x) = inl (wk-Var Γ τ l x)

☹

+  2
-  0



Let's Formalize STLC (Again)

😊

+ 4+  2

wk-Var : ∀ Γ τ, Var Γ → Var (Γ , τ) 
wk-Var Γ τ = dcoe Var (wk Γ τ)

-  8

dcoe : {A : Type} (F : A → UCov)  
       {x y : A} (p : Hom x y) 
     → ------------------------- 
       F x → F y



Let's Formalize STLC (Again)

☹☹

+ 4
- 0
+  2
-  8

wk-Tm : ∀ Γ τ l, Tm Γ → Tm (wk-Ctx Γ τ l) 
wk-Tm Γ τ l (var x)    = var (wk-Var Γ τ l x) 
wk-Tm Γ τ l (abs τ' t) = abs τ' (wk-Tm (Γ , τ') τ (inl l) t) 
wk-Tm Γ τ l (app t t') = app (wk-Tm Γ τ l t) 
                             (wk-Tm Γ τ l t')



Let's Formalize STLC (Again)

😊😊😊

+  2
- 11

wk-Tm : ∀ Γ τ, Tm Γ → Tm (Γ , τ) 
wk-Tm Γ τ = dcoe Tm (wk Γ τ)



Let's Formalize STLC (Again)

That's not fair, though:

 I only implemented the outermost weakening in our new theory...right?

Wrong!!!



Let's Formalize STLC (Again)

wk' : ∀ Γ τ τ', Hom (Γ , τ) (Γ , τ' , τ) 
wk' Γ τ τ' = ap (λ Γ → Γ , τ) (wk Γ τ')

wk-Var' : ∀ Γ τ τ', Var (Γ , τ) → Var (Γ , τ' , τ) 
wk-Var' Γ τ τ' = dcoe Var (wk' Γ τ τ')

wk-Tm' : ∀ Γ τ τ', Tm (Γ , τ) → Tm (Γ , τ' , τ) 
wk-Tm' Γ τ τ' = dcoe Tm (wk' Γ τ τ')

x : A         y : A     
f : A → B    p : Hom x y

ap f p : Hom (f x) (f y)



Let's Formalize STLC (Again)

wk'' : ∀ Γ τ τ', Hom Γ (Γ , τ , τ') 
wk'' Γ τ τ' = wk Γ τ ∘ wk (Γ , τ) τ'

wk-Var'' : ∀ Γ τ τ', Var Γ → Var (Γ , τ , τ') 
wk-Var'' Γ τ τ' = dcoe Var (wk'' Γ τ τ')

wk-Tm'' : ∀ Γ τ τ', Tm Γ → Tm (Γ , τ , τ') 
wk-Tm'' Γ τ τ' = dcoe Tm (wk' Γ τ τ')



Let's Formalize STLC (Again)

• In general, we specify that we want to weaken from Γ to Γ' by providing a 
morphisms from Γ to Γ'


• Before, this data was provided by a triple containing a context, location 
in that context and the type by which to weaken


•  dcoe F is the function that executes weakening for the type family F 


• In summary: the type theory implemented weakening by arbitrary many 
variables in arbitrary locations automatically!



Let's Formalize STLC (Again)

Now let's quickly consider weakening our typing derivations

+  2
- 11

(Note: this is more speculative than what's been shown previously)



Let's Formalize STLC (Again)

😊

+  3
- 11

getTy : (Γ : Ctx) → Var Γ → Ty 
getTy ∙ x = abort x 
getTy (Γ , τ) (inr x) = τ 
getTy (Γ , τ) (inl x) = getTy Γ x 
getTy (wk Γ τ) = id (getTy Γ) : Hom (λ x → getTy Γ x) 
                                    (λ x → getTy (Γ , τ) (inl x))



Let's Formalize STLC (Again)
data _⊢_∈_ (Γ : Ctx) : Tm Γ → Ty → UCov where 

  tvar : (x : Var Γ)  
       → ----------------------------  
         Γ ⊢ var x ∈ getTy Γ x  

  tabs : {τ τ' : Ty} {t : Tm (Γ , τ)}  
         (_ : Γ , τ ⊢ t ∈ τ') 
       → ---------------------------- 
         Γ ⊢ (abs τ t) ∈ τ ⇒ τ' 

  tapp : {τ τ' : Ty} {t t' : Tm Γ} 
         (_ : Γ ⊢ t ∈ τ ⇒ τ') 
         (_ : Γ ⊢ t' ∈ τ) 
       → ----------------------------  
         Γ ⊢ app t t' ∈ τ'😊

+  3
- 11



Let's Formalize STLC (Again)

😭😭😭😭

wk-Tc : ∀ Γ τ l {t} {τ'}, Γ ⊢ t ∈ τ'  
      → ------------------------------------- 
        (wk-Ctx Γ τ l) ⊢ (wk-Tm Γ τ l t) ∈ τ' 

wk-Tc Γ τ l (tvar x)      = coe (λ τ' → _ ⊢ _ ∈ τ') 
                                (wk-getTy Γ τ l x) 
                                (tvar (wk-Var Γ τ l x)) 
wk-Tc Γ τ l (tabs tc)     = tabs (wk-Tc (Γ , _) τ (inl l) tc)  
wk-Tc Γ τ l (tapp tc tc') = tapp (wk-Tc Γ τ l tc) 
                                 (wk-Tc Γ τ l tc')

+  3
- 11



Let's Formalize STLC (Again)

🤩🤩🤩🤩🤩

(ΣHom Tm (wk Γ τ) t : Hom (Γ       , t)  
                          ((Γ , τ) , dcoe Tm (wk Γ τ) t)

wk-Tc : ∀ Γ τ {t} {τ'}, Γ ⊢ t ∈ τ'  
      → ------------------------------------- 
        Γ , τ ⊢ (wk-Tm Γ τ t) ∈ τ' 

wk-Tc Γ τ l = dcoe (λ (Γ , t) → Γ ⊢ t ∈ τ') (ΣHom Tm (wk Γ τ) t)

+  3
- 26



Let's Formalize STLC (Again)
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Let's Formalize STLC (Again)
weak Tm (wk Γ τ ∘ wk (Γ , τ) τ') : Tm Γ → Tm (Γ, τ, τ')

• This function traverses the term once, and at each variable applies the 
function inl twice


• We get generic programs for free with


•  strong semantic guarantees


• efficient computation



Let's Formalize STLC (Again)

• We can internally witness that weakening for Tm and type checking is 
uniquely determined by Var : Ctx → UCov


• The definition we get for free must be the one we wrote by hand before


• We can use this fact in later proofs!



So how do we make  
any of this work?



Math!!!



Defining Bicubical Directed Type Theory

• We define this type theory using categorical semantics


• Types are interpreted as mathematical objects called bicubical sets 


• It is an extension of the model of cartesian cubical type theory by Carlo Anguli, 
Guillaume Brunerie, Thierry Coquand, Favonia, Bob Harper and Dan Licata


• Our approach to augmenting their work with directed paths is based off of the 
work of Emily Riehl and Mike Shulman that uses bisimplicial sets (as opposed 
to bicubical sets)


• We construct our universe internally using a method developed by Dan Licata, 
Ian Orton, Andy Pitts and Bas Spitters



Defining Bicubical Directed Type Theory

• Like the cartesian cubical model, our model is constructive


• i.e. everything actually computes


• Our main contribution is the construction of a covariant universe UCov s.t.


•  A → B ≃ HomUCov A B


• This equivalence is called directed univalence


• (caveat: we currently only have a constructive proof that A → B is a 
retract of HomUCov A B)



Our Formalization

• Our approach to this is based off of that done by Ian Orton and Andy Pitts 


• Use Agda...


• ...but only Π, Σ, ≡ w/ uip, ⊤, ⊥, Prop


• Build theory as a shallow embedding in this basic dependent type theory



Our Formalization

• Types and terms of Agda coincide with the types and terms of our model


• We use _≡_ to encode the judgmental equality in our model


• More generally, we use Prop to contain judgements of the metatheory 
of our model


• Precisely corresponds to a categorical model of type theory


• Despite this fact, is 100% syntactic



Our Formalization

Hom : (A : Type) → A → A → Type 
Hom A x y = Σ p : 𝟚 → A , p 𝟘 ≡ x × p 𝟙 ≡ y



Our Formalization



Future Directions

• Directed Higher Inductive Types


• A general theory for types like Ctx 


• Extended "real world" application(s) in verification


• i.e. demonstrate directed type theory actually works and is helpful in 
"the wild" (e.g. real(ish) compiler, etc...)



Bicubical Directed Type Theory
• We've defined a constructive model of type theory that extends cubical 

type theory with


• Directed paths


• A covariant universe with directed univalence (81.25%)


• These new features can make formal verification easier


• We still have to develop more of the theory (i.e. DHITs) before we can use 
it in practice 


