Bicubical Directed Type Theory

Matthew Weaver

General Examination May 7th, 2018

Advised by Andrew Appel and Dan Licata

Bicubical Directed Type Theory

- Bicubical directed type theory is a constructive model of type theory
- It extends cubical type theory with an second notion of path that is directed
- We define a particularly well behaved universe of types in our model and construct directed univalence for this universe
- This is joint work with Dan Licata

What is it good for?

- theory
- existing proofs in homotopy theory, but inspired new proofs
 - Directed type theory could do the same for category theory

Bicubical directed type theory provides a constructive setting for category

Homotopy/cubical type theory has not only made it easier to formalize

What is it good for?

- Today we'll focus on one specific application that seems most relevant to this audience:
 - formal verification of computational structures

A New Foundation for Formal Verification

systems and computational structures is becoming tractable

• We're at a point where formal verification of real, large-scale software

A New Foundation for Formal Verification

- While there has been some improvement, these proof-developments are unavoidably massive and time-consuming to develop
- The ease of verification is limited by the proof theory used in these projects
- Directed type theory provides a new setting for these proofs with primitives that correspond to fundamental concepts in computer science
- This change in foundational theory results in proofs and programs that are shorter and easier to write

But First: The Simply Typed Lambda Calculus

(the old-fashioned way)

- Let's define the simply typed lambda calculus inside of Agda,
- and then prove that our definition is invariant under weakening:

• Warning: This may get a bit ugly

data Ty : ⁻ A : Ty _⇒_ : Ty

data Ty : Type where

 \rightarrow : $Ty \rightarrow Ty \rightarrow Ty$

Var : $Ctx \rightarrow Type$ Var • $= \bot$ Var $(\Gamma, \tau) = (Var \Gamma) + T$

data Tm (Γ : Ctx) : Type where var : Var Γ → Tm Γ app : Tm $\Gamma \rightarrow$ Tm $\Gamma \rightarrow$ Tm Γ

Var $(x_1 : \tau_1, x_2 : \tau_2, ..., x_n : \tau_n)$ $:= \{X_1, X_2, ..., X_n\}$

Tm t := var x abs : $(\tau : Ty) \rightarrow Tm (\Gamma, \tau) \rightarrow Tm \Gamma$ |λτ.t t t'

getTy : $(\Gamma : Ctx) \rightarrow Var \ \Gamma \rightarrow Ty$ getTy • x = abort x getTy $(\Gamma , \tau) (inr x) = \tau$ getTy $(\Gamma , \tau) (inl x) = getTy \ \Gamma x$

- - tvar : $(x : Var \Gamma)$
 - $\Gamma \vdash var x \in getTy \Gamma x$
 - tabs : {ττ' : Ty} {t : Tm (Γ, τ)} $(: \Gamma, \tau \vdash t \in \tau')$
 - tapp : {ττ' : Ty} {t t' : Tm Γ} $(: \Gamma \vdash t \in \tau \Rightarrow \tau')$ $(: \Gamma \vdash t' \in \tau)$ $\Gamma \vdash app t t' \in \tau'$

data $\vdash \in (\Gamma : Ctx) : Tm \Gamma \rightarrow Ty \rightarrow Type$ where

```
\Gamma \vdash (abs \tau t) \in \tau \Rightarrow \tau'
```

Now let's show everything is invariant under weakening of contexts

wk-Var : $\forall \Gamma \tau$, Var $\Gamma \rightarrow$ Var (Γ , τ) wk-Var $\Gamma \tau = inl$

wk-Tm : $\forall \Gamma \tau$, Tm $\Gamma \rightarrow$ Tm (Γ , τ) $wk-Tm \Gamma \tau (var x) = var (wk-Var \Gamma \tau x)$ wk-Tm $\Gamma \tau$ (app t t') = app (wk-Tm $\Gamma \tau$ t) wk-Tm $\Gamma \tau$ (abs $\tau' t$) = abs τ' ?? : Tm (Γ , τ , τ')

(wk-Tm Γ τ t') wk-Tm (Γ, τ') τ t : Tm (Γ, τ', τ)

- Loc : $Ctx \rightarrow Type$ $Loc \bullet = T$ Loc $(\Gamma, \tau) = (Loc \Gamma) + T$
- wk-Ctx : (Γ : Ctx) \rightarrow Ty \rightarrow Loc $\Gamma \rightarrow$ Ctx $wk-Ctx \bullet \tau l = \bullet, \tau$ wk-Ctx (Γ , τ') τ (inr l) = (Γ , τ'), τ wk-Ctx (Γ , τ') τ (inl l) = (wk-Ctx $\Gamma \tau$ l), τ'

wk-Ctx Γτl

- Loc : $Ctx \rightarrow Type$ $Loc \bullet = T$ Loc $(\Gamma, \tau) = (Loc \Gamma) + T$
- wk-Ctx : (Γ : Ctx) \rightarrow Ty \rightarrow Loc $\Gamma \rightarrow$ Ctx $wk-Ctx \bullet \tau l = \bullet, \tau$ wk-Ctx (Γ , τ') τ (inr l) = (Γ , τ'), τ wk-Ctx (Γ , τ') τ (inl l) = (wk-Ctx $\Gamma \tau$ l), τ'

wk-Ctx Γτl •, τ₁,...,τ_n,τ,τ_{n+1},...

wk-Var : $\forall \Gamma \tau l$, Var $\Gamma \rightarrow Var$ (wk-Ctx $\Gamma \tau l$) wk-Var • $\tau l x = abort x$ wk-Var (Γ , τ') τ (inr l) x = inl x wk-Var (Γ , τ') τ (inl l) (inr x) = inr x wk-Var (Γ , τ') τ (inl l) (inl x) = inl (wk-Var $\Gamma \tau l x$)

wk-Tm : $\forall \Gamma \tau l$, Tm $\Gamma \rightarrow$ Tm (wk-Ctx $\Gamma \tau l$) $wk-Tm \Gamma \tau l (var x) = var (wk-Var \Gamma \tau l x)$ wk-Tm Γτl (app t t') = app (wk-Tm Γτl t)

wk-Tc $\Gamma \tau l$ (tabs tc) = t wk-Tc $\Gamma \tau l$ (tapp tc tc') = t

 $\Gamma \vdash t \in \tau'$ $(wk-Tm \ \Gamma \ \tau \ l \ t) \in \tau'$ $= coe \ (\lambda \ \tau' \rightarrow \ \vdash \ \in \tau')$ $(wk-getTy \ \Gamma \ \tau \ l \ x)$ $(tvar \ (wk-Var \ \Gamma \ \tau \ l \ x))$ $= tabs \ (wk-Tc \ (\Gamma \ , \) \ \tau \ (inl \ l) \ tc)$ $= tapp \ (wk-Tc \ \Gamma \ \tau \ l \ tc)$ $(wk-Tc \ \Gamma \ \tau \ l \ tc)$

- We know the only interesting part of weakening is its action on variables
- The type theory doesn't, resulting in verbose but trivial programs and proofs

What if we want to weaken by multiple variables at once?

- We can iterate our previously defined weakening functions, which is inefficient but maintains our proof guarantees

• We can reimplement a more efficient version and redo all of the proofs

• When it comes to weakening, we demonstrate there is an inclusion of the types in the type families

Var $\Gamma \subseteq$ Var (Γ, τ) Tm $\Gamma \subseteq$ Tm (Γ, τ)

Can we potentially gain insight by comparing this to subtyping?

Var Γ <: Var (Γ , τ) Tm Γ <: Tm (Γ , τ)

- Let's consider a type theory where we can specify that, for any type family F : Ctx \rightarrow Type, it must be the case that F Γ <: F (Γ , τ)
- We would like this relation to have congruence rules, like subtyping
 - e.g. we can use that we know how to weaken variables to define how to weaken terms,
 - ... and use both of these to define how to weaken typing derivations

- We don't want to restrict every F : Ctx \rightarrow Type to those where there is a unique way for F Γ <: F (Γ , τ)
 - e.g. we could also implement our variables to be reversed (inside-out)
- Therefore this theory must keep track of which proof of this relation we are using: p : F Γ <: F (Γ , τ)
- p is a special function specifying how to turn a F $\,$ I into a F $\,$ (Γ , $\,$ τ)

- Thus, in this theory, A <: B has some qualities of subtyping, but is computationally relevant
- functions and subtyping? Yes!

Can we define a theory with a notion that strike this balance between

Review of Subtyping

• Example:

record student : Type where name : String birthday : Date school : String

• We equip a type theory with a new judgement: A < : B for types A and B

t : A A <: B t : B

<:

record person : Type where name : String birthday : Date

let's be explicit when we use subtyping in our syntax:

As I already hinted towards a theory where subtyping looks like functions,

t : A A <: B t : B

let's be explicit when we use subtyping in our syntax:

t : A A <: B cast_{A<:B} t : B

As I already hinted towards a theory where subtyping looks like functions,

let's be explicit when we use subtyping in our syntax:

cast_A

As I already hinted towards a theory where subtyping looks like functions,

$$A <: B$$

 $A <: B \rightarrow B$

- A : Type B : Type
- A <: B : Type

p : A <: B $cast_{A \le B} p : A \rightarrow B$

 $f : A \rightarrow B$ dua f : A <: B

 $f : A \rightarrow B$ cast_{A<:B} (dua f) ≡_β f

p : A <: B dua (cast_{A<:B} p) \equiv_n p

• What might subtyping look like were it internally visible in the language?

p : A <: B $cast_{A<:B} p : A \rightarrow B$

A : Type B : Type A <: B : Type
Merging Subtyping and Functions

- Subtyping is now just a wrapper for the function type...
- ...with no additional structure or payoff.
- Yet.

- Let's think back to the STLC:
- Using this odd perspective of subtyping, we've proven that, $\forall \Gamma \tau$,

Var Γ <: Var (Γ , τ)

Beyond Subtyping

Tm Γ <: Tm (Γ , τ)

• As mentioned before, we always want that, for every $F : Ctx \rightarrow Type$,

F Γ <: F (Γ , τ)

- Let's extend our theory to make this restriction possible!
- As is typical in dependent type theory, let's not distinguish types and terms

Beyond Subtyping

A: Type x: A y: A x <: y : Type

- Let's extend our theory to make this restriction possible!
- As is typical in dependent type theory, let's not distinguish types and terms

Beyond Subtyping

A: Type x: A y: A Hom x y : Type

• We call terms of Hom x y "morphisms" or "directed paths" from x to y

Beyond Subtyping

We equip every type with a proof-relevant binary relation that is reflexive

x : A

id x : Hom x x

transitive

xyz:A p:Homxy q:Homyz $p \circ q$: Hom x z

Beyond Subtyping

We equip every type with a proof-relevant binary relation that is reflexive,

The type theory insures that all functions preserve this relation

Beyond Subtyping

We equip every type with a proof-relevant binary relation that is reflexive, transitive and congruent

- Now that we have morphisms in all types, let's define datatypes where this morphism structure is nontrivial
- The Idea: allow inductive types to include constructors for both terms and the morphisms
- The induction principle has cases corresponding to both kinds of constructors

Nontrivial Morphisms

data Ctx : Type where • : Ctx _,_ : Ctx → Ty → Ctx wk : ∀ Γ τ, Hom Γ (Γ , τ)

Ctx-rec A C1 C2 C3 • \equiv_{β} C1

Nontrivial Morphisms

Ctx-rec : (A : Type)
(C1 : A)
(C2 : A
$$\rightarrow$$
 Ty \rightarrow A)
(C3 : \forall a τ , Hom a (C2 a τ
 \rightarrow
Ctx \rightarrow A

Ctx-rec A C1 C2 C3 (Γ , τ) \equiv_{β} C2 (Ctx-rec A C1 C2 C3 Γ) τ ap (Ctx-rec A C1 C2 C3) (wk Γ τ) ≡_β C3 (Ctx-rec A C1 C2 C3 Γ) τ

data Ctx : Type where • : Ctx _,_ : Ctx → Ty → Ctx wk : ∀ Γ τ, Hom Γ (Γ , τ)

corresponding to the fact morphisms are reflexive, transitive and congruent

Nontrivial Morphisms

Ctx-rec : (A : Type)
(C1 : A)
(C2 : A
$$\rightarrow$$
 Ty \rightarrow A)
(C3 : \forall a τ , Hom a (C2 a τ
 \rightarrow
Ctx \rightarrow A

Note there are no cases in both the definition and the recursion principle

What's up with ap?

- apfp:Hom(fx)(fy)
- This rule states that everything is covariant:
- Given A A' B : Type, and p : Hom A A',
 - ap $(\lambda X \rightarrow (X \rightarrow B))$ p : Hom $(A \rightarrow B)$ $(A' \rightarrow B)$

 $x : A \qquad y : A$ f: A \rightarrow B p: Hom x y

What's up with ap?

- In this framework, morphisms in Type can be thought of as describing how two types are related, and are not (just) functions
 - Given F : Type → Type, ap F is the proof that F sends related inputs to related outputs
- We'd like to define a universe of types where morphisms are functions
- Let's call it UCov
 - Given F : UCov \rightarrow UCov, ap F maps a function f : A \rightarrow B to a function ap F f : F A \rightarrow F B

- In order for F : A \rightarrow UCov to typecheck, F must be covariant
 - e.g. $\lambda X \rightarrow (A \rightarrow X)$: UCov \rightarrow UCov typechecks
 - e.g. $\lambda X \rightarrow (X \rightarrow B)$: UCov \rightarrow UCov does not typecheck
- As morphisms coincide with functions, UCov is equipped with the following:

dua : {A B : UCov}
(A
$$\rightarrow$$
 B)
 \rightarrow -----
Hom A B

dcoe : {A : Type} (F : A
$$\rightarrow$$
 UCov)
{x y : A} (p : Hom x y)
 \rightarrow F x \rightarrow F y

dcoe : {A : Type} (F : A \rightarrow UCov) $F x \rightarrow F y$

• As functions are morphisms in UCov, this is the same as saying:

 $\{x y : A\}$ (p : Hom x y)

 $F : A \rightarrow UCov \qquad Hom x y$ Hom (F x) (F y)

dcoe : {A : Type} (F : A \rightarrow UCov) $F x \rightarrow F y$

• As functions are morphisms in UCov, this is the same as saying:

 $\{x y : A\}$ (p : Hom x y)

ICov Hom x y x <: F y

dcoe : {A : Type} (F : A \rightarrow UCov) $F x \rightarrow F y$

• As functions are morphisms in UCov, this is the same as saying:

 $\{x y : A\}$ (p : Hom x y)

 $F : Ctx \rightarrow UCov$ FΓ<: F(Γ, τ)

• We can also prove that UCov is closed under various type-formers:

T : UCov

A : UCov B : UCov $A \times B : UCov$

⊥ : UCov

A : UCov B : UCov A + B : UCov

 $F : UCov \rightarrow UCov polynomial$ μ F : UCov

(i.e. inductive types)

- A : UCov B : UCov A \times B : UCov
- Because we have dcoe for UCov, this closure property is a proof that there is a unique solution to the following:
 - A <: A' A × B
- Thus, by working in UCov, we get the congruence properties we wanted

Let's check out what it's like to use this type theory

data Ty : Type where A : Ty

 $\Rightarrow : Ty \rightarrow Ty \rightarrow Ty$

 $\Rightarrow : Ty \rightarrow Ty \rightarrow Ty$

data Ctx : Type where _,_ : Ctx → Ty → Ctx wk : ∀ Γ τ, Hom Γ (Γ , τ)

Var : Ctx \rightarrow Type Var • = \perp Var (Γ , τ) = (Var Γ) + T

data Tm (Γ : Ctx) : Type where var : Var Γ → Tm Γ app : $Tm \Gamma \rightarrow Tm \Gamma \rightarrow Tm \Gamma$

abs : $(\tau : Ty) \rightarrow Tm (\Gamma , \tau) \rightarrow Tm \Gamma$

data Tm (Γ : Ctx) : <u>UCov</u> where var : Var $\Gamma \rightarrow Tm \Gamma$ app : $Tm \Gamma \rightarrow Tm \Gamma \rightarrow Tm \Gamma$

abs : $(\tau : Ty) \rightarrow Tm (\Gamma, \tau) \rightarrow Tm \Gamma$

Let's first consider weakening terms

Loc : $Ctx \rightarrow Type$ $Loc \bullet = T$ Loc $(\Gamma, \tau) = (Loc \Gamma) + T$

wk-Ctx : (Γ : Ctx) \rightarrow Ty \rightarrow Loc $\Gamma \rightarrow$ Ctx $wk-Ctx \bullet \tau l = \bullet, \tau$ wk-Ctx (Γ , τ') τ (inr l) = (Γ , τ'), τ

wk-Ctx (Γ , τ') τ (inl l) = (wk-Ctx $\Gamma \tau$ l), τ'

wk-Var : $\forall \Gamma \tau l$, Var $\Gamma \rightarrow Var$ (wk-Ctx $\Gamma \tau l$) wk-Var • $\tau l x = abort x$ wk-Var (Γ , τ') τ (inr l) x = inl x wk-Var (Γ , τ') τ (inl l) (inr x) = inr x


```
wk-Var (\Gamma, \tau') \tau (inl l) (inl x) = inl (wk-Var \Gamma \tau l x)
```


wk-Var : $\forall \Gamma \tau$, Var $\Gamma \rightarrow$ Var (Γ , τ) wk-Var $\Gamma \tau = dcoe$ Var (wk $\Gamma \tau$)

dcoe : {A : Type} (F : A \rightarrow UCov) {x y : A} (p : Hom x y) \rightarrow F x \rightarrow F y

wk-Tm : $\forall \Gamma \tau l$, Tm $\Gamma \rightarrow$ Tm (wk-Ctx $\Gamma \tau l$) $wk-Tm \Gamma \tau l (var x) = var (wk-Var \Gamma \tau l x)$ $wk-Tm \Gamma \tau l (app t t') = app (wk-Tm \Gamma \tau l t)$

wk-Tm : $\forall \Gamma \tau$, Tm $\Gamma \rightarrow$ Tm (Γ , τ) wk-Tm $\Gamma \tau = dcoe Tm (wk \Gamma \tau)$

That's not fair, though: I only implemented the outermost weakening in our new theory...right?

Wrong!!!

wk': $\forall \Gamma \tau \tau'$, Hom (Γ , τ) (Γ , τ' , τ) wk' $\Gamma \tau \tau' = ap (\lambda \Gamma \rightarrow \Gamma, \tau) (wk \Gamma \tau')$

wk-Var' : $\forall \Gamma \tau \tau'$, Var (Γ , τ) wk-Var' $\Gamma \tau \tau' = dcoe Var (wk')$

wk-Tm': $\forall \Gamma \tau \tau', Tm (\Gamma, \tau) \rightarrow Tm (\Gamma, \tau', \tau)$ wk-Tm' $\Gamma \tau \tau' = dcoe Tm (wk' \Gamma \tau \tau')$

x : A y : A $f : A \rightarrow B$ p : Hom x yapfp:Hom(fx)(fy)

wk'' : ∀ Γ τ τ', Hom Γ (Γ , τ , τ') wk'' $\Gamma \tau \tau' = wk \Gamma \tau \circ wk (\Gamma, \tau) \tau'$

wk-Var'': $\forall \Gamma \tau \tau'$, $\forall Var \Gamma \rightarrow Var (\Gamma, \tau, \tau')$ wk-Var'' $\Gamma \tau \tau' = dcoe Var (wk'' \Gamma \tau \tau')$

wk-Tm'' : $\forall \Gamma \tau \tau'$, Tm $\Gamma \rightarrow$ Tm (Γ , τ , τ') wk-Tm'' $\Gamma \tau \tau' = dcoe Tm (wk' \Gamma \tau \tau')$
- In general, we specify that we want to weaken from Γ to Γ' by providing a morphisms from Γ to Γ'
 - Before, this data was provided by a triple containing a context, location in that context and the type by which to weaken
- dcoe F is the function that executes weakening for the type family F
- In summary: the type theory implemented weakening by arbitrary many variables in arbitrary locations automatically!

Now let's quickly consider weakening our typing derivations

(Note: this is more speculative than what's been shown previously)

getTy : $(\Gamma : Ctx) \rightarrow Var \Gamma \rightarrow Ty$ getTy • x = abort x getTy $(\Gamma , \tau) (inr x) = \tau$ getTy $(\Gamma , \tau) (inl x) = getTy \Gamma x$ getTy $(wk \Gamma \tau) = id (getTy \Gamma) : Hom (\lambda x \rightarrow getTy \Gamma x)$

Γ x : Hom (λ x → getTy Γ x) (λ x → getTy (Γ , τ) (inl x))

- - tvar : (x : Var Γ)
 - $\Gamma \vdash var x \in getTy \Gamma x$
 - tabs : {τ τ' : Ty} {t : Tm (Γ , τ)} $(: \Gamma, \tau \vdash t \in \tau')$
 - $\Gamma \vdash (abs \tau t) \in \tau \Rightarrow \tau'$
 - tapp : {τ τ' : Ty} {t t' : Tm Γ} (_ : Γ ⊢ t ∈ τ ⇒ τ') $(: \Gamma \vdash t' \in \tau)$
 - Γ⊢ app t t' ∈ τ'

data $\vdash \in (\Gamma : Ctx) : Tm \Gamma \rightarrow Ty \rightarrow UCov$ where

- wk-Tc : ∀ Γ τ l {t} {τ'}, Γ ⊢ t ∈ τ' $(wk-Ctx \Gamma \tau l) \vdash (wk-Tm \Gamma \tau l t) \in \tau'$
- wk-Tc Γ τ l (tvar x)
- wk-Tc $\Gamma \tau l$ (tapp tc tc') = tapp (wk-Tc $\Gamma \tau l$ tc)

 $= \operatorname{coe} (\lambda \tau' \rightarrow \vdash \in \tau')$ (wk-getTy Γτl x) (tvar (wk-Var Γ τ l x)) wk-Tc $\Gamma \tau l$ (tabs tc) = tabs (wk-Tc (Γ ,) τ (inl l) tc) (wk-Tc Γ τ l tc')

Γ, τ ⊢ (wk-Tm Γ τ t) ∈ τ' $((\Gamma, \tau), dcoe Tm (wk \Gamma \tau) t)$

Let's Formalize STLC (Again) wk-Tc : $\forall \Gamma \tau \{t\} \{\tau'\}, \Gamma \vdash t \in \tau'$ wk-Tc $\Gamma \tau l = dcoe(\lambda (\Gamma, t) \rightarrow \Gamma \vdash t \in \tau') (\Sigma Hom Tm (wk <math>\Gamma \tau) t)$ (ΣHom Tm (wk Γ τ) t : Hom (Γ , t))

Directed Agda

weak Tm (wk $\Gamma \tau \circ wk$ (Γ , τ) τ') : Tm $\Gamma \rightarrow$ Tm (Γ , τ , τ')

- function inl twice
- We get generic programs for free with
 - strong semantic guarantees
 - efficient computation

• This function traverses the term once, and at each variable applies the

- We can internally witness that weakening for Tm and type checking is uniquely determined by Var : $Ctx \rightarrow UCov$
 - The definition we get for free must be the one we wrote by hand before
 - We can use this fact in later proofs!

So how do we make any of this work?

Math!!!

Defining Bicubical Directed Type Theory

- We define this type theory using categorical semantics
- Types are interpreted as mathematical objects called bicubical sets
- It is an extension of the model of cartesian cubical type theory by Carlo Anguli, Guillaume Brunerie, Thierry Coquand, Favonia, Bob Harper and Dan Licata
- Our approach to augmenting their work with directed paths is based off of the work of Emily Riehl and Mike Shulman that uses bisimplicial sets (as opposed to bicubical sets)
- We construct our universe internally using a method developed by Dan Licata, Ian Orton, Andy Pitts and Bas Spitters

Defining Bicubical Directed Type Theory

- Like the cartesian cubical model, our model is constructive
 - i.e. everything actually computes
- - $A \rightarrow B \simeq Hom_{UCov} A B$
 - This equivalence is called directed univalence
 - retract of Hom_{UCov} A B)

• Our main contribution is the *construction* of a covariant universe UCov s.t.

• (caveat: we currently only have a constructive proof that $A \rightarrow B$ is a

- Use Agda...
 - ...but only Π , Σ , \equiv w/ uip, T, \perp , Prop

Our approach to this is based off of that done by Ian Orton and Andy Pitts

• Build theory as a shallow embedding in this basic dependent type theory

- Types and terms of Agda coincide with the types and terms of our model
- We use _≡_ to encode the judgmental equality in our model
 - More generally, we use Prop to contain judgements of the metatheory of our model
- Precisely corresponds to a categorical model of type theory
 - Despite this fact, is 100% syntactic

Hom : (A : Type) \rightarrow A \rightarrow A \rightarrow Type

Hom $A \times y = \Sigma p : \mathbb{2} \rightarrow A$, $p \mathbb{0} \equiv x \times p \mathbb{1} \equiv y$

```
dcom-dua : ∀ {l1 l2 : Level} {Γ : Set l1}
              (x : Γ → 2)
               (A B : Γ → Set 12)
               (f: (\Theta: \Gamma) \rightarrow A \Theta \rightarrow B \Theta)
              → relCov A
              → relCov B
              → relCov1 (duaF x A B f)
dcom-dua x A B f dcomA dcomB p \alpha t b =
 glue _____(v-elimd01 _ (\ xp1=0 \rightarrow fst (tleft xp1=0))
                           ( \ge p1=1 \rightarrow fst b' ))
            (fst b' ,
             v-elimd01 (\ xp1=0 \rightarrow fst (snd b') (inr xp1=0))
                           (  xpl=1 \rightarrow id) ),
            (\ pα → glue-cong
                            (\lambda = (v - e limd \theta)
                                   ( \ge p1=0 \rightarrow ! (tleft-\alpha p\alpha \ge p1=0))
                                    (\ xp1=1 \rightarrow fst (snd b') (inl pa) \circ unglue-a (t 1 pa) (inr xp1=1) )))
                           (fst (snd b') (inl p\alpha)) • Gluen (t 1 p\alpha) where
  back-in-time : ((x \circ p)) \ge 1 == \ge 0 \rightarrow (y : \_) \rightarrow (x \circ p) == \ge 0
  back-in-time eq y = transport (\ h \rightarrow (x o p) y \leq h) eq (dimonotonicity\leq (x o p) y \geq 1 id)
  -- when the result in is in A, compose in A
  tleft-fill : (y : 2) (xp1=0 : x (p ``1) == ``0) \rightarrow _
  tleft-fill y xp1=0 =
    dcomApyα
            (\ z \ p\alpha \rightarrow coe \ (Glue-\alpha \ (inl \ (back-in-time \ xp1=0 \ z))) \ (t \ z \ p\alpha))
            (coe (Glue-α (inl (back-in-time xpl=0 ``0 ))) (fst b) ,
                 (\lambda \ p\alpha \rightarrow ((ap \ (coe \ (Glue-\alpha \_ \_ \_ (inl \_))) \ (snd \ b \ p\alpha)) \circ ap \ (\ h \rightarrow (coe \ (Glue-\alpha \_ \_ \_ (inl \ h)) \ (t \ \ 0 \ p\alpha))) \ uip)))
  tleft = tleft-fill ``1
  -- on α, the composite in A is just t l
  tleft-\alpha : (p\alpha : \alpha) \rightarrow (xp1=0 : x(p ``1) == ``0) \rightarrow
 -- unglue everyone to B and compose there, agreeing with f (tleft-fill) on xp1 = 0
  b' : Σ \ (b' : B (p ``1)) → _
  b' = dcomB p ``1
               (\alpha \vee (x (p ``1) == ``0))
               (( z \rightarrow case ( p\alpha \rightarrow unglue (t z p\alpha))))
                              ( xp1=0 \rightarrow f (p z) (fst (tleft-fill z xp1=0)))
                              ( p\alpha xp1=0 \rightarrow ap (f (p z)) (fst (snd (tleft-fill z xp1=0)) p\alpha) \circ ! (unglue-\alpha (t z p\alpha) (inl (back-in-time xp1=0 z))) )))
               (unglue (fst b) ,
                 v-elim _ (\ p\alpha \rightarrow ap unglue (snd b p\alpha))
                            ( xp1=0 \rightarrow unglue-\alpha (fst b) (inl (back-in-time xp1=0 ``0)) \circ ! (ap (f (p ``0)) (snd (snd (tleft-fill ``0 xp1=0)) id)) )
```

- Directed Higher Inductive Types
 - A general theory for types like Ctx
- Extended "real world" application(s) in verification
 - i.e. demonstrate directed type theory actually works and is helpful in "the wild" (e.g. real(ish) compiler, etc...)

Future Directions

Bicubical Directed Type Theory

- We've defined a constructive model of type theory that extends cubical type theory with
 - Directed paths
 - A covariant universe with directed univalence (81.25%)
- These new features can make formal verification easier
- We still have to develop more of the theory (i.e. DHITs) before we can use it in practice