
Bicubical Directed Type Theory

Matthew Weaver

Advised by Andrew Appel and Dan Licata

General Examination

 May 7th, 2018 ⌧⌧

Bicubical Directed Type Theory

• Bicubical directed type theory is a constructive model of type theory

• It extends cubical type theory with an second notion of path that is
directed

• We define a particularly well behaved universe of types in our model and
construct directed univalence for this universe

• This is joint work with Dan Licata

What is it good for?

• Bicubical directed type theory provides a constructive setting for category
theory

• Homotopy/cubical type theory has not only made it easier to formalize
existing proofs in homotopy theory, but inspired new proofs

• Directed type theory could do the same for category theory

What is it good for?

Today we'll focus on one specific application that

seems most relevant to this audience:

formal verification of computational structures

• We're at a point where formal verification of real, large-scale software
systems and computational structures is becoming tractable

A New Foundation for Formal Verification

• We're at a point where formal verification of real, large-scale software
systems and computational structures is becoming tractable

A New Foundation for Formal Verification

A New Foundation for Formal Verification

• While there has been some improvement, these proof-developments are
unavoidably massive and time-consuming to develop

• The ease of verification is limited by the proof theory used in these
projects

• Directed type theory provides a new setting for these proofs with
primitives that correspond to fundamental concepts in computer science

• This change in foundational theory results in proofs and programs that are
shorter and easier to write

But First:
The Simply Typed Lambda Calculus

(the old-fashioned way)

Let's Formalize STLC

• Let's define the simply typed lambda calculus inside of Agda,

• and then prove that our definition is invariant under weakening:

Γ ⊢ t : τ
Γ, x : τ' ⊢ t : τ

• Warning: This may get a bit ugly

Let's Formalize STLC

data Ctx : Type where
 ∙ : Ctx
 , : Ctx → Ty → Ctx

data Ty : Type where
 A : Ty
 ⇒ : Ty → Ty → Ty

Let's Formalize STLC

data Tm (Γ : Ctx) : Type where 
 var : Var Γ → Tm Γ
 abs : (τ : Ty) → Tm (Γ , τ) → Tm Γ
 app : Tm Γ → Tm Γ → Tm Γ

Var : Ctx → Type
Var ∙ = ⊥
Var (Γ , τ) = (Var Γ) + ⊤

Tm t :=

 | var x

 | λ τ . t

 | t t'

Var (x₁ : τ₁, x₂ : τ₂, ..., xn : τn)

 := {x₁, x₂, ..., xn}

Let's Formalize STLC

getTy : (Γ : Ctx) → Var Γ → Ty
getTy ∙ x = abort x
getTy (Γ , τ) (inr x) = τ
getTy (Γ , τ) (inl x) = getTy Γ x

Let's Formalize STLC
data _⊢_∈_ (Γ : Ctx) : Tm Γ → Ty → Type where

 tvar : (x : Var Γ)
 → ----------------------------
 Γ ⊢ var x ∈ getTy Γ x

 tabs : {τ τ' : Ty} {t : Tm (Γ , τ)}
 (_ : Γ , τ ⊢ t ∈ τ')
 → ----------------------------
 Γ ⊢ (abs τ t) ∈ τ ⇒ τ'

 tapp : {τ τ' : Ty} {t t' : Tm Γ}
 (_ : Γ ⊢ t ∈ τ ⇒ τ')
 (_ : Γ ⊢ t' ∈ τ)
 → ----------------------------
 Γ ⊢ app t t' ∈ τ'

Let's Formalize STLC

Now let's show everything is invariant under weakening of contexts

Let's Formalize STLC

wk-Var : ∀ Γ τ, Var Γ → Var (Γ , τ)
wk-Var Γ τ = inl

wk-Tm : ∀ Γ τ, Tm Γ → Tm (Γ , τ)
wk-Tm Γ τ (var x) = var (wk-Var Γ τ x)
wk-Tm Γ τ (app t t') = app (wk-Tm Γ τ t)
 (wk-Tm Γ τ t')
wk-Tm Γ τ (abs τ' t) = abs τ' ??? : Tm (Γ , τ , τ')

 wk-Tm (Γ , τ') τ t : Tm (Γ , τ' , τ)

Let's Formalize STLC
Loc : Ctx → Type
Loc ∙ = ⊤
Loc (Γ , τ) = (Loc Γ) + ⊤

wk-Ctx :(Γ : Ctx) → Ty → Loc Γ → Ctx
wk-Ctx ∙ τ l = ∙ , τ
wk-Ctx (Γ , τ') τ (inr l) = (Γ , τ') , τ
wk-Ctx (Γ , τ') τ (inl l) = (wk-Ctx Γ τ l) , τ'

Γ = ∙, τ1,...,τn,τn+1,...

l
wk-Ctx Γ τ l

∙, τ1,...,τn,τn+1,...
τ

Let's Formalize STLC
Loc : Ctx → Type
Loc ∙ = ⊤
Loc (Γ , τ) = (Loc Γ) + ⊤

wk-Ctx :(Γ : Ctx) → Ty → Loc Γ → Ctx
wk-Ctx ∙ τ l = ∙ , τ
wk-Ctx (Γ , τ') τ (inr l) = (Γ , τ') , τ
wk-Ctx (Γ , τ') τ (inl l) = (wk-Ctx Γ τ l) , τ'

Γ = ∙, τ1,...,τn,τn+1,...

l
wk-Ctx Γ τ l

∙, τ1,...,τn, τn+1,...τ,

Let's Formalize STLC

wk-Var : ∀ Γ τ l, Var Γ → Var (wk-Ctx Γ τ l)
wk-Var ∙ τ l x = abort x
wk-Var (Γ , τ') τ (inr l) x = inl x
wk-Var (Γ , τ') τ (inl l) (inr x) = inr x
wk-Var (Γ , τ') τ (inl l) (inl x) = inl (wk-Var Γ τ l x)

Let's Formalize STLC

wk-Tm : ∀ Γ τ l, Tm Γ → Tm (wk-Ctx Γ τ l)
wk-Tm Γ τ l (var x) = var (wk-Var Γ τ l x)
wk-Tm Γ τ l (app t t') = app (wk-Tm Γ τ l t)
 (wk-Tm Γ τ l t')
wk-Tm Γ τ l (abs τ' t) = abs τ' (wk-Tm (Γ , τ') τ (inl l) t)

Let's Formalize STLC

wk-Tc : ∀ Γ τ l {t} {τ'}, Γ ⊢ t ∈ τ'
 → -------------------------------------
 (wk-Ctx Γ τ l) ⊢ (wk-Tm Γ τ l t) ∈ τ'

wk-Tc Γ τ l (tvar x) = coe (λ τ' → _ ⊢ _ ∈ τ')
 (wk-getTy Γ τ l x)
 (tvar (wk-Var Γ τ l x))
wk-Tc Γ τ l (tabs tc) = tabs (wk-Tc (Γ , _) τ (inl l) tc)
wk-Tc Γ τ l (tapp tc tc') = tapp (wk-Tc Γ τ l tc)
 (wk-Tc Γ τ l tc')

Let's Formalize STLC

• We know the only interesting part of weakening is its action on variables

• The type theory doesn't, resulting in verbose but trivial programs and
proofs

Let's Formalize STLC

What if we want to weaken by multiple variables at once?

• We can iterate our previously defined weakening functions, which is
inefficient but maintains our proof guarantees

• We can reimplement a more efficient version and redo all of the proofs

Let's Formalize STLC
• When it comes to weakening, we demonstrate there is an inclusion of the

types in the type families

Var Γ ⊆ Var (Γ , τ) Tm Γ ⊆ Tm (Γ , τ)

• Can we potentially gain insight by comparing this to subtyping?

Var Γ <: Var (Γ , τ) Tm Γ <: Tm (Γ , τ)

Let's Formalize STLC

• Let's consider a type theory where we can specify that, for any type family
F : Ctx → Type, it must be the case that F Γ <: F (Γ , τ)

• We would like this relation to have congruence rules, like subtyping

• e.g. we can use that we know how to weaken variables to define how to
weaken terms,

• ... and use both of these to define how to weaken typing derivations

Let's Formalize STLC

• We don't want to restrict every F : Ctx → Type to those where there is
a unique way for F Γ <: F (Γ , τ)

• e.g. we could also implement our variables to be reversed (inside-out)

• Therefore this theory must keep track of which proof of this relation we are
using: p : F Γ <: F (Γ , τ)

• p is a special function specifying how to turn a F Γ into a F (Γ , τ)

Let's Formalize STLC

• Thus, in this theory, A <: B has some qualities of subtyping, but is
computationally relevant

• Can we define a theory with a notion that strike this balance between
functions and subtyping? Yes!

Review of Subtyping

• We equip a type theory with a new judgement: A <: B for types A and B

• Example:

t : A A <: B
t : B

record person : Type where
 name : String
 birthday : Date

record student : Type where
 name : String
 birthday : Date
 school : String

<:

Merging Subtyping and Functions

• As I already hinted towards a theory where subtyping looks like functions,
let's be explicit when we use subtyping in our syntax:

t : A A <: B
t : B

Merging Subtyping and Functions

• As I already hinted towards a theory where subtyping looks like functions,
let's be explicit when we use subtyping in our syntax:

t : A A <: B
castA<:B t : B

Merging Subtyping and Functions

• As I already hinted towards a theory where subtyping looks like functions,
let's be explicit when we use subtyping in our syntax:

A <: B
castA<:B : A → B

Merging Subtyping and Functions
• What might subtyping look like were it internally visible in the language?

A : Type B : Type
A <: B : Type

Merging Subtyping and Functions

p : A <: B
castA<:B p : A → B

• What might subtyping look like were it internally visible in the language?

Merging Subtyping and Functions

f : A → B
dua f : A <: B

• What might subtyping look like were it internally visible in the language?

Merging Subtyping and Functions

f : A → B
castA<:B (dua f) ≡β f

• What might subtyping look like were it internally visible in the language?

Merging Subtyping and Functions

p : A <: B
dua (castA<:B p) ≡η p

• What might subtyping look like were it internally visible in the language?

Merging Subtyping and Functions

p : A <: B
castA<:B p : A → B

f : A → B
dua f : A <: B

f : A → B
castA<:B (dua f) ≡β f

p : A <: B
dua (castA<:B p) ≡η p

• What might subtyping look like were it internally visible in the language?

A : Type B : Type
A <: B : Type

Merging Subtyping and Functions

• Subtyping is now just a wrapper for the function type...

• ...with no additional structure or payoff.

• Yet.

Beyond Subtyping
• Let's think back to the STLC:

• Using this odd perspective of subtyping, we've proven that, ∀ Γ τ,

Var Γ <: Var (Γ , τ) Tm Γ <: Tm (Γ , τ)

• As mentioned before, we always want that, for every F : Ctx → Type,

 F Γ <: F (Γ , τ)

Beyond Subtyping
• Let's extend our theory to make this restriction possible!

• As is typical in dependent type theory, let's not distinguish types and terms

A : Type x : A y : A
x <: y : Type

Beyond Subtyping
• Let's extend our theory to make this restriction possible!

• As is typical in dependent type theory, let's not distinguish types and terms

A : Type x : A y : A
Hom x y : Type

• We call terms of Hom x y "morphisms" or "directed paths" from x to y

Beyond Subtyping

x : A

id x : Hom x x

We equip every type with a proof-relevant binary relation that is reflexive,
transitive and congruent

Beyond Subtyping

x y z : A p : Hom x y q : Hom y z
p ∘ q : Hom x z

We equip every type with a proof-relevant binary relation that is reflexive,
transitive and congruent

Beyond Subtyping

• The type theory insures that all functions preserve this relation

x : A y : A
f : A → B p : Hom x y

ap f p : Hom (f x) (f y)

We equip every type with a proof-relevant binary relation that is reflexive,
transitive and congruent

Nontrivial Morphisms

• Now that we have morphisms in all types, let's define datatypes where
this morphism structure is nontrivial

• The Idea: allow inductive types to include constructors for both terms and
the morphisms

• The induction principle has cases corresponding to both kinds of
constructors

data Ctx : Type where
 ∙ : Ctx
 , : Ctx → Ty → Ctx
 wk : ∀ Γ τ, Hom Γ (Γ , τ)

Ctx-rec : (A : Type)
 (c₁ : A)
 (c₂ : A → Ty → A)

 → ------------------
 Ctx → A

 Ctx-rec A c₁ c₂ c₃ ∙ ≡β c₁

ap (Ctx-rec A c₁ c₂ c₃) (wk Γ τ) ≡β c₃ (Ctx-rec A c₁ c₂ c₃ Γ) τ

Nontrivial Morphisms

 Ctx-rec A c₁ c₂ c₃ (Γ , τ) ≡β c₂ (Ctx-rec A c₁ c₂ c₃ Γ) τ

 (c₃ : ∀ a τ, Hom a (c₂ a τ))

data Ctx : Type where
 ∙ : Ctx
 , : Ctx → Ty → Ctx
 wk : ∀ Γ τ, Hom Γ (Γ , τ)

Ctx-rec : (A : Type)
 (c₁ : A)
 (c₂ : A → Ty → A)
 (c₃ : ∀ a τ, Hom a (c₂ a τ))
 → ----------------------------
 Ctx → A

Nontrivial Morphisms

• Note there are no cases in both the definition and the recursion principle
corresponding to the fact morphisms are reflexive, transitive and
congruent

What's up with ap?

• This rule states that everything is covariant:

ap (λ X → (X → B)) p : Hom (A → B) (A' → B)

A <: A'
A → B <: A' → B

Given A A' B : Type, and p : Hom A A',

x : A y : A
f : A → B p : Hom x y

ap f p : Hom (f x) (f y)

What's up with ap?
• In this framework, morphisms in Type can be thought of as describing

how two types are related, and are not (just) functions

• Given F : Type → Type, ap F is the proof that F sends related
inputs to related outputs

• We'd like to define a universe of types where morphisms are functions

• Let's call it UCov

• Given F : UCov → UCov, ap F maps a function f : A → B to a
function ap F f : F A → F B

Universe for Subtyping

dcoe : {A : Type} (F : A → UCov)
 {x y : A} (p : Hom x y)
 → -------------------------
 F x → F y

dua : {A B : UCov}
 (A → B)
 → ------------
 Hom A B

• In order for F : A → UCov to typecheck, F must be covariant

• e.g. λ X → (A → X) : UCov → UCov typechecks

• e.g. λ X → (X → B) : UCov → UCov does not typecheck

• As morphisms coincide with functions, UCov is equipped with the following:

B <: B'
A → B <: A → B'

A <: A'
A → B <: A' → B

Universe for Subtyping
dcoe : {A : Type} (F : A → UCov)
 {x y : A} (p : Hom x y)
 → -------------------------
 F x → F y

• As functions are morphisms in UCov, this is the same as saying:

F : A → UCov Hom x y
Hom (F x) (F y)

Universe for Subtyping
dcoe : {A : Type} (F : A → UCov)
 {x y : A} (p : Hom x y)
 → -------------------------
 F x → F y

• As functions are morphisms in UCov, this is the same as saying:

F : A → UCov Hom x y
F x <: F y

Universe for Subtyping
dcoe : {A : Type} (F : A → UCov)
 {x y : A} (p : Hom x y)
 → -------------------------
 F x → F y

• As functions are morphisms in UCov, this is the same as saying:

F : Ctx → UCov
F Γ <: F (Γ , τ)

Universe for Subtyping
• We can also prove that UCov is closed under various type-formers:

A : UCov B : UCov
A × B : UCov

A : UCov B : UCov
A + B : UCov

⊤ : UCov ⊥ : UCov

F : UCov → UCov polynomial
μ F : UCov

(i.e. inductive types)

Universe for Subtyping

• Because we have dcoe for UCov, this closure property is a proof that
there is a unique solution to the following:

A : UCov B : UCov
A × B : UCov

A <: A' B <: B'
A × B <: A' × B'

• Thus, by working in UCov, we get the congruence properties we wanted

The Payoff

Let's check out what it's like to use this type theory

Let's Formalize STLC (Again)

data Ty : Type where
 A : Ty
 ⇒ : Ty → Ty → Ty

☹

+ 0
- 0

Let's Formalize STLC (Again)

data Ty : UCov where
 A : Ty
 ⇒ : Ty → Ty → Ty

😊

+ 0
- 0

Let's Formalize STLC (Again)

data Ctx : Type where
 ∙ : Ctx
 , : Ctx → Ty → Ctx

☹

+ 0
- 0

Let's Formalize STLC (Again)

data Ctx : Type where
 ∙ : Ctx
 , : Ctx → Ty → Ctx
 wk : ∀ Γ τ, Hom Γ (Γ , τ)

😊

+ 1
- 0

Let's Formalize STLC (Again)

☹

+ 1
- 0

Var : Ctx → Type
Var ∙ = ⊥
Var (Γ , τ) = (Var Γ) + ⊤

Let's Formalize STLC (Again)

Var : Ctx → UCov
Var ∙ = ⊥
Var (Γ , τ) = (Var Γ) + ⊤
Var (wk Γ τ) = dua inl : Hom (Var Γ) (Var (Γ , τ))

😊

+ 2
- 0

Let's Formalize STLC (Again)

data Tm (Γ : Ctx) : Type where 
 var : Var Γ → Tm Γ
 abs : (τ : Ty) → Tm (Γ , τ) → Tm Γ
 app : Tm Γ → Tm Γ → Tm Γ

☹

+ 2
- 0

Let's Formalize STLC (Again)

😊

data Tm (Γ : Ctx) : UCov where 
 var : Var Γ → Tm Γ
 abs : (τ : Ty) → Tm (Γ , τ) → Tm Γ
 app : Tm Γ → Tm Γ → Tm Γ

+ 2
- 0

Let's Formalize STLC (Again)
+ 2
- 0

Let's first consider weakening terms

Let's Formalize STLC (Again)

☹

+ 2
- 0

Loc : Ctx → Type
Loc ∙ = ⊤
Loc (Γ , τ) = (Loc Γ) + ⊤

wk-Ctx : (Γ : Ctx) → Ty → Loc Γ → Ctx
wk-Ctx ∙ τ l = ∙ , τ
wk-Ctx (Γ , τ') τ (inr l) = (Γ , τ') , τ
wk-Ctx (Γ , τ') τ (inl l) = (wk-Ctx Γ τ l) , τ'

Let's Formalize STLC (Again)

wk-Var : ∀ Γ τ l, Var Γ → Var (wk-Ctx Γ τ l)
wk-Var ∙ τ l x = abort x
wk-Var (Γ , τ') τ (inr l) x = inl x
wk-Var (Γ , τ') τ (inl l) (inr x) = inr x
wk-Var (Γ , τ') τ (inl l) (inl x) = inl (wk-Var Γ τ l x)

☹

+ 2
- 0

Let's Formalize STLC (Again)

😊

+ 4+ 2

wk-Var : ∀ Γ τ, Var Γ → Var (Γ , τ)
wk-Var Γ τ = dcoe Var (wk Γ τ)

- 8

dcoe : {A : Type} (F : A → UCov)
 {x y : A} (p : Hom x y)
 → -------------------------
 F x → F y

Let's Formalize STLC (Again)

☹☹

+ 4
- 0
+ 2
- 8

wk-Tm : ∀ Γ τ l, Tm Γ → Tm (wk-Ctx Γ τ l)
wk-Tm Γ τ l (var x) = var (wk-Var Γ τ l x)
wk-Tm Γ τ l (abs τ' t) = abs τ' (wk-Tm (Γ , τ') τ (inl l) t)
wk-Tm Γ τ l (app t t') = app (wk-Tm Γ τ l t)
 (wk-Tm Γ τ l t')

Let's Formalize STLC (Again)

😊😊😊

+ 2
- 11

wk-Tm : ∀ Γ τ, Tm Γ → Tm (Γ , τ)
wk-Tm Γ τ = dcoe Tm (wk Γ τ)

Let's Formalize STLC (Again)

That's not fair, though:

 I only implemented the outermost weakening in our new theory...right?

Wrong!!!

Let's Formalize STLC (Again)

wk' : ∀ Γ τ τ', Hom (Γ , τ) (Γ , τ' , τ)
wk' Γ τ τ' = ap (λ Γ → Γ , τ) (wk Γ τ')

wk-Var' : ∀ Γ τ τ', Var (Γ , τ) → Var (Γ , τ' , τ)
wk-Var' Γ τ τ' = dcoe Var (wk' Γ τ τ')

wk-Tm' : ∀ Γ τ τ', Tm (Γ , τ) → Tm (Γ , τ' , τ)
wk-Tm' Γ τ τ' = dcoe Tm (wk' Γ τ τ')

x : A y : A
f : A → B p : Hom x y

ap f p : Hom (f x) (f y)

Let's Formalize STLC (Again)

wk'' : ∀ Γ τ τ', Hom Γ (Γ , τ , τ')
wk'' Γ τ τ' = wk Γ τ ∘ wk (Γ , τ) τ'

wk-Var'' : ∀ Γ τ τ', Var Γ → Var (Γ , τ , τ')
wk-Var'' Γ τ τ' = dcoe Var (wk'' Γ τ τ')

wk-Tm'' : ∀ Γ τ τ', Tm Γ → Tm (Γ , τ , τ')
wk-Tm'' Γ τ τ' = dcoe Tm (wk' Γ τ τ')

Let's Formalize STLC (Again)

• In general, we specify that we want to weaken from Γ to Γ' by providing a
morphisms from Γ to Γ'

• Before, this data was provided by a triple containing a context, location
in that context and the type by which to weaken

• dcoe F is the function that executes weakening for the type family F

• In summary: the type theory implemented weakening by arbitrary many
variables in arbitrary locations automatically!

Let's Formalize STLC (Again)

Now let's quickly consider weakening our typing derivations

+ 2
- 11

(Note: this is more speculative than what's been shown previously)

Let's Formalize STLC (Again)

😊

+ 3
- 11

getTy : (Γ : Ctx) → Var Γ → Ty
getTy ∙ x = abort x
getTy (Γ , τ) (inr x) = τ
getTy (Γ , τ) (inl x) = getTy Γ x
getTy (wk Γ τ) = id (getTy Γ) : Hom (λ x → getTy Γ x)
 (λ x → getTy (Γ , τ) (inl x))

Let's Formalize STLC (Again)
data _⊢_∈_ (Γ : Ctx) : Tm Γ → Ty → UCov where

 tvar : (x : Var Γ)
 → ----------------------------
 Γ ⊢ var x ∈ getTy Γ x

 tabs : {τ τ' : Ty} {t : Tm (Γ , τ)}
 (_ : Γ , τ ⊢ t ∈ τ')
 → ----------------------------
 Γ ⊢ (abs τ t) ∈ τ ⇒ τ'

 tapp : {τ τ' : Ty} {t t' : Tm Γ}
 (_ : Γ ⊢ t ∈ τ ⇒ τ')
 (_ : Γ ⊢ t' ∈ τ)
 → ----------------------------
 Γ ⊢ app t t' ∈ τ'😊

+ 3
- 11

Let's Formalize STLC (Again)

😭😭😭😭

wk-Tc : ∀ Γ τ l {t} {τ'}, Γ ⊢ t ∈ τ'
 → -------------------------------------
 (wk-Ctx Γ τ l) ⊢ (wk-Tm Γ τ l t) ∈ τ'

wk-Tc Γ τ l (tvar x) = coe (λ τ' → _ ⊢ _ ∈ τ')
 (wk-getTy Γ τ l x)
 (tvar (wk-Var Γ τ l x))
wk-Tc Γ τ l (tabs tc) = tabs (wk-Tc (Γ , _) τ (inl l) tc)
wk-Tc Γ τ l (tapp tc tc') = tapp (wk-Tc Γ τ l tc)
 (wk-Tc Γ τ l tc')

+ 3
- 11

Let's Formalize STLC (Again)

🤩🤩🤩🤩🤩

(ΣHom Tm (wk Γ τ) t : Hom (Γ , t)
 ((Γ , τ) , dcoe Tm (wk Γ τ) t)

wk-Tc : ∀ Γ τ {t} {τ'}, Γ ⊢ t ∈ τ'
 → -------------------------------------
 Γ , τ ⊢ (wk-Tm Γ τ t) ∈ τ'

wk-Tc Γ τ l = dcoe (λ (Γ , t) → Γ ⊢ t ∈ τ') (ΣHom Tm (wk Γ τ) t)

+ 3
- 26

Let's Formalize STLC (Again)

0

15

30

45

60

Lines of Code

33

59

Agda Directed Agda

Let's Formalize STLC (Again)
weak Tm (wk Γ τ ∘ wk (Γ , τ) τ') : Tm Γ → Tm (Γ, τ, τ')

• This function traverses the term once, and at each variable applies the
function inl twice

• We get generic programs for free with

• strong semantic guarantees

• efficient computation

Let's Formalize STLC (Again)

• We can internally witness that weakening for Tm and type checking is
uniquely determined by Var : Ctx → UCov

• The definition we get for free must be the one we wrote by hand before

• We can use this fact in later proofs!

So how do we make
any of this work?

Math!!!

Defining Bicubical Directed Type Theory

• We define this type theory using categorical semantics

• Types are interpreted as mathematical objects called bicubical sets

• It is an extension of the model of cartesian cubical type theory by Carlo Anguli,
Guillaume Brunerie, Thierry Coquand, Favonia, Bob Harper and Dan Licata

• Our approach to augmenting their work with directed paths is based off of the
work of Emily Riehl and Mike Shulman that uses bisimplicial sets (as opposed
to bicubical sets)

• We construct our universe internally using a method developed by Dan Licata,
Ian Orton, Andy Pitts and Bas Spitters

Defining Bicubical Directed Type Theory

• Like the cartesian cubical model, our model is constructive

• i.e. everything actually computes

• Our main contribution is the construction of a covariant universe UCov s.t.

• A → B ≃ HomUCov A B

• This equivalence is called directed univalence

• (caveat: we currently only have a constructive proof that A → B is a
retract of HomUCov A B)

Our Formalization

• Our approach to this is based off of that done by Ian Orton and Andy Pitts

• Use Agda...

• ...but only Π, Σ, ≡ w/ uip, ⊤, ⊥, Prop

• Build theory as a shallow embedding in this basic dependent type theory

Our Formalization

• Types and terms of Agda coincide with the types and terms of our model

• We use _≡_ to encode the judgmental equality in our model

• More generally, we use Prop to contain judgements of the metatheory
of our model

• Precisely corresponds to a categorical model of type theory

• Despite this fact, is 100% syntactic

Our Formalization

Hom : (A : Type) → A → A → Type
Hom A x y = Σ p : 𝟚 → A , p 𝟘 ≡ x × p 𝟙 ≡ y

Our Formalization

Future Directions

• Directed Higher Inductive Types

• A general theory for types like Ctx

• Extended "real world" application(s) in verification

• i.e. demonstrate directed type theory actually works and is helpful in
"the wild" (e.g. real(ish) compiler, etc...)

Bicubical Directed Type Theory
• We've defined a constructive model of type theory that extends cubical

type theory with

• Directed paths

• A covariant universe with directed univalence (81.25%)

• These new features can make formal verification easier

• We still have to develop more of the theory (i.e. DHITs) before we can use
it in practice

