
Shaowei Zhu
Advisor: Zachary Kincaid
Princeton University
May 2020

A Compositional and Monotone
Approach to Termination
Towards a more dependable and scalable termination analysis

1

Background

2

program correctness =
partial correctness + termination proof
It does the right thing if it terminates It does terminate

3

Programs as transition systems
• A program statement defines a transition

on the state space

• Transition system

• : state space

• : transition relation

S

⟨S, R⟩

S

R ⊆ S × S

4

Ranking functions
• Loop terminates iff it has a ranking

function

• Ranking function for a loop with
state space and body

• is a mapping from state
space into a set equipped
with a well-founded relation

•

• Examples: linear ranking functions,
lexicographic linear ranking functions

r
S R

r : S → B
S B

≻

(s1, s2) ∈ R ⇒ r(s1) ≻ r(s2)

!// ranking function: x
while (x > 0) {
 x = x - 1;
}

!// ranking function: < i, j >
while (i > 0) {
 if (j > 0) {
 j!--;
 } else {
 j = 100;
 i!--;
 }
}

5

Theory Practice

• Complete procedure for lexicographic
ranking function synthesis for a single
loop (Gonnord et al., 2015)

• Deciding termination of linear transition
systems (Tiwari, 2004)

• Weakest terminating pre-conditions for
octagonal relations (Bozga et al., 2012)

• …

• Repeatedly sample a lasso-shaped trace
and synthesize ranking function for it (Cook
et al., 2006)

• Extend single-loop ranking function
synthesis to whole program termination by
analyzing paths between cut points
(Gonnord et al., 2015)

• Guess ranking function candidates, and
then synthesize conditions under which they
become real ranking functions (Cook et al.,
2008)

• …

6

Motivation

7

— Peter O’Hearn

“Because Infer is compositional, it can operate
incrementally, quickly producing results on a code diff
even if the diff is part of a codebase in the millions of
lines”

8

analyze each loop in isolation and combine the analysis results
It brings us: parallelism and scalability, incremental analysis, etc.

Want: a compositional analysis of termination

9

Want: a compositional analysis of termination

Requires: an analysis that generates
sufficient conditions for termination

10

• Consider a compositional
analysis for termination that
looks at each loop in isolation

• When analyzing the while loop,
we don’t know what values
could x take

• The analysis need to figure out a
sufficient condition for
termination and checks if the
context implies that condition

if (!__VERIFIER_nondet_int() !!= 0) {
 x = 1;
} else {
 x = -1;
}

!// conditions: x > 0 or x < 0
while (y < 100 !&& z < 100) {
 y = y + x;
 z = z - x;
}

11

— Leino and Moskal

“Tools can understand our programs, but
we cannot understand our tools”

12

widely used in modern tools, but lead to unpredictability in the analysis

Heuristics

13

• #1 tool in Software Verification
Competition termination category

• Supports linear, lexicographic
linear, multiphase, piecewise
ranking functions, etc.

• Can prove this program
terminates within a few seconds,
but …

int main() {
 int x, y, z, a, b;
 int n;

 while (z !>= 0 !&& !__VERIFIER_nondet_int()) {
 z = z - 1;
 }

 if (a !== b) {
 while (x !>= 0 !&& y !>= 0) {
 y = y - z;
 while (z > 0) {
 z = z - 1;
 y = y + 2 * z - x;
 }
 x = x + a - b - 1;
 }
 }

 return 0;
}

Ultimate Automizer

14

int main() {
 int x, y, z, a, b;
 int n;

 if (z > 999999) {

 while (z !>= 0 !&& !__VERIFIER_nondet_int()) {
 z = z - 1;
 }

 if (a !== b) {
 while (x !>= 0 !&& y !>= 0) {
 y = y - z;
 while (z > 0) {
 z = z - 1;
 y = y + 2 * z - x;
 }
 x = x + a - b - 1;
 }
 }

 }

 return 0;
}

Ultimate Automizer
• #1 tool in Software Verification

Competition termination category
• Supports linear, lexicographic

linear, multiphase, piecewise
ranking functions, etc.

• Can prove this program
terminates within a few seconds,
but it will not terminate after 30
minutes on this slightly modified
program which ought to be
“easier” to reason about

15

produces a more precise result when given more precise information
Want: a predictable analysis of termination

16

Theory Practice

This work presents a termination analysis that is:

• Predictable

• Adding information to program leads to more
precise analysis results

• Compositional

• Analyzing on a per-loop basis

17

A monotone and compositional
analysis for conditional termination

18

How we achieve compositionality
and predictability?
• Compositionality: compute termination conditions for a program by analyzing its components and

composing the results

• Extend Tarjan’s framework to termination analysis

• Predictability: give a monotone procedure that computes a sufficient terminating precondition for a
program

• Exploit the compositional framework

• Reduce termination of programs to termination of single loops

• Access to a summary for the body of each loop

• Utilize decision procedure for linear loops to generate terminating pre-conditions for summaries

• Abstract transition formulas into linear models that can be handled by Tiwari’s method
19

a ∈ Σ
e ∈ RegExp(Σ)::= a ∣ 0 ∣ 1 ∣ e1 + e2 ∣ e1e2 ∣ e*

An algebraic framework for
program analysis

• (Tarjan, 1981) views the control flow graph
of the program as a labelled graph where
labels are transitions relations

• Can efficiently compute regular
expressions that recognize all paths
between two program locations

• Certain program analysis can be defined
using interpretation of regular
expressions that represent sets of paths

20

Interpreting path expressions as transition formulas

• Transition formula

• A formula in linear integer arithmetic
over program variables and primed
program variables, and loop counter

• Describes a transition relation

• Compositional recurrence analysis
(Kincaid et al., 2015) interprets path
expressions as transition formulas

TF x ∈ Var
n ∈ ℤ

y ∈ BoundVar
t ∈ Term::= x ∣ x′� ∣ y ∣ n ∣ n ⋅ t ∣ t1 + t2

T ∈ TF::= t1 < t2 ∣ t1 = t2 ∣ T1 ∧ T2 ∣ T1 ∨ T2 ∣ ∃y . T

T1 +𝒯 T2 ≜ T1 ∨ T2

0𝒯 ≜ False
1𝒯 ≜ ⋀

x∈Var
x′� = x

T1 ⋅𝒯 T2 ≜ ∃Var′�′� . T1[Var′� ↦ Var′ �′ �] ∧ T2[Var ↦ Var′�′ �]

T*𝒯 ≜ …
𝒯[](u, x := e, v)]] ≜ x′� = e ∧ ⋀

y≠x∈Var
y′� = y

𝒯[](u, assume(c), v)]] ≜ c ∧ ⋀
x∈Var

x′� = x
21

a ∈ Σ
e ∈ RegExp(Σ)::= a ∣ 0 ∣ 1 ∣ e1 + e2 ∣ e1e2 ∣ e*

f ∈ ω-RegExp(Σ)::= eω ∣ e; f ∣ f1 ⊕ f2

An algebraic framework for
compositional termination analysis

• We augment Tarjan’s framework with -regular expressions:

• State formula

• formula in LIA over program variables that describes a
set of program states

• Termination analysis defined as interpretation of -path
expressions

• atc: , approximate transitive closure operator
provides the summary of loop body (Kincaid et al., 2015)

• swf: , gives a set of initial states from which
the transition is guaranteed to terminate

• Let be the set of -paths starting at program entry. If
if a state from which there is an non-terminating
execution, then

ω

SF

ω

TF → TF

TF → SF

p ω s

s ⊧ 𝒯(p)

S𝒯 ≜ TF
T1 +𝒯 T2 ≜ T1 ∨ T2

0𝒯 ≜ False
1𝒯 ≜ ⋀

x∈Var
x′� = x

T1 ⋅𝒯 T2 ≜ ∃Var′�′ � . T1[Var′ � ↦ Var′ �′�] ∧ T2[Var ↦ Var′�′�]

T*𝒯 ≜ atc(T)

𝒯[](u, x := e, v)]] ≜ x′� = e ∧ ⋀
y≠x∈Var

y′� = y

𝒯[](u, assume(c), v)]] ≜ c ∧ ⋀
x∈Var

x′� = x

L𝒯 ≜ SF
Tω𝒯 ≜ ¬swf(T)

T;𝒯 S ≜ ∃Var′� . T ∧ S[Var ↦ Var′�]
S1 ⊕𝒯 S2 ≜ S1 ∨ S2

22

How we achieve compositionality
and predictability?
• Compositionality: compute termination conditions for a program by analyzing its components and

composing the results

• Extend Tarjan’s framework to termination analysis

• Predictability: give a monotone procedure that computes a sufficient terminating precondition for a
program

• Exploit the compositional framework

• Reduce termination of programs to termination of single loops (swf operator)

• Access to a summary for the body of each loop (atc operator)

• Utilize decision procedure for linear loops to generate terminating pre-conditions for summaries

• Abstract transition formulas into linear models that can be handled by Tiwari’s method
23

Termination analysis of the whole program

Define swf() operator that
finds terminating pre-
conditions for a transition
formula

Define atc() that computes the
approximate transitive closure of
a transition formula

Compositional Recurrence
analysis (Kincaid et al., 2015)

Terminating
preconditions for linear

transition systems with rational
eigenvalues based on (Tiwari,

2004)

Reduce

in a monotone manner

24

Tiwari has a way to synthesize
conditions for termination, but …

25

Long-term Dynamics of Linear Transition Systems
• Suppose the loop to the right does not terminate

after iterations, then what are the values of , ,
and ?

k x y
z

while (x > 0) {
 x = x + y;
 y = y + z;
}

•

•

x′�

y′�

z′ �

= [
1 1 0
0 1 1
0 0 1] [

x
y
z]

x(k)

y(k)

z(k)

= [
1 1 0
0 1 1
0 0 1]

k x(0)

y(0)

z(0)

26

Long-term Dynamics of Linear Transition Systems

•

•

•

• Obviously the value of affects termination, so
we look at

•

z(k) = z(0)

y(k) = y(0) + kz(0)

x(k) = x(0) + ky(0) +
k(k − 1)

2
z(0)

x

x(k) = x(0) + k(y(0) −
1
2

z(0)) + k2 z(0)

2

while (x > 0) {
 x = x + y;
 y = y + z;
}

• Suppose the loop to the right does not terminate
after iterations, then what are the values of , ,
and ?

k x y
z

27

Long-term Dynamics of Linear Transition Systems

•

• Consider when gets large enough

• If then

• If but , then

• If , , then

x(k) = x(0) + k(y(0) −
1
2

z(0)) + k2 z(0)

2
k k2 ≫ k ≫ 1

z(0)

2
≠ 0 x(k) ≈ k2 z(0)

2
z(0)

2
= 0 y(0) −

1
2

z(0) ≠ 0

x(k) ≈ k(y(0) −
1
2

z(0))

z(0)

2
= 0 y(0) −

1
2

z(0) = 0 x(k) ≈ x(0)

while (x > 0) {
 x = x + y;
 y = y + z;
}

28

Long-term Dynamics of Linear Transition Systems

• If then

• If but , then

• If , , then

z(0)

2
≠ 0 x(k) ≈ k2 z(0)

2
> 0 ⇒

z(0)

2
> 0

z(0)

2
= 0 y(0) −

1
2

z(0) ≠ 0

x(k) ≈ k(y(0) −
1
2

z(0)) > 0 ⇒ y(0) −
1
2

z(0) > 0

z(0)

2
= 0 y(0) −

1
2

z(0) = 0 x(k) ≈ x(0) > 0

If the loop never terminates, can actually
get large enough and still holds

k
x(k) > 0

while (x > 0) {
 x = x + y;
 y = y + z;
}

29

Long-term Dynamics of Linear Transition Systems

• , or

• , or

•

z(0)

2
> 0

z(0)

2
= 0 ∧ y(0) −

1
2

z(0) > 0

z(0)

2
= 0 ∧ y(0) −

1
2

z(0) = 0 ∧ x(0) > 0

Thus non-termination implies the following:

while (x > 0) {
 x = x + y;
 y = y + z;
}

The negation of the above condition implies termination! (Tiwari, 2004)

z < 0
∨ (z = 0 ∧ y < 0)
∨ (z = 0 ∧ y = 0 ∧ x ≤ 0)

30

Dominant Term Analysis (DTA) exploits long-time dynamics

• Using Tiwari’s analysis to generate
terminating conditions requires

1. Finding loop guards expressed in
linear terms of program variables
(polyhedral guards)

2. Linear loop update as matrix
multiplication

• Exists a linear ordering on the
eigenvalues of

x′� = Ax

A

while (x > 0) {
 x = x + y;
 y = y + z;
}

x(k)

y(k)

z(k)

= [
1 1 0
0 1 1
0 0 1]

k x(0)

y(0)

z(0)

k2 ≫ k ≫ 1
31

Q: When is this possible? What if we
have to compare and ?

A: That is hard to do. Want to consider only
matrices with real/rational eigenvalues

e
kπ
3 i e

3kπ
4 i

Dominant Term Analysis (DTA) exploits long-time dynamics

• Using Tiwari’s analysis to generate
terminating conditions requires

1. Finding loop guards expressed in
linear terms of program variables
(polyhedral guards)

2. Linear loop update as matrix
multiplication

• Exists a linear ordering on the
eigenvalues of

x′� = Ax

A

32

Tiwari has a way to synthesize
conditions for termination, but …

33

only applies to linear transition systems with
polyhedral guards and rational spectra

Tiwari has a way to synthesize
conditions for termination, but

34

Termination analysis of the whole program

Define swf() operator that
finds terminating pre-
conditions for a transition
formula

Define atc() that computes the
approximate transitive closure of
a transition formula

Compositional Recurrence
analysis (Kincaid et al., 2015)

Terminating
preconditions for linear

transition systems with rational
eigenvalues based on (Tiwari,

2004)

Reduce using theory
of best abstractions
in a monotone manner

35

Simulation as abstraction

a a′�

p(a) p(a′�)
R̃A

RA

p p
A

Ã

• Transition system

• Transition system

• is a simulation from transition
system to transition system if for all
-transitions ,

• Existence of simulation from to has
the consequence that termination of
implies termination of

• If have a terminating condition for
then we can get a sufficient terminating
condition for as

A = ⟨SA, RA⟩

Ã = ⟨S̃A, R̃A ⟩

p : SA → S̃A
A Ã A

(a, a′ �) ∈ RA
(p(a), p(a′�)) ∈ R̃A

p A Ã
Ã

A

C Ã

A p−1(C)
36

Simulation as abstraction

a a′�

p(a) p(a′�)
R̃A

RA

p p
A

Ã

while (x + y !>= 0) {
 if (!__VERIFIER_nondet_int()) {
 x = x - 1;
 } else {
 y = y - 1;
 }
}

Transition formula of : A
x + y ≥ 0 ∧ ((x′� = x − 1 ∧ y′ � = y) ∨ (y′� = y − 1 ∧ x′� = x))

Simulation s : [x
y] → x + y

Transition formula of : Ã
t ≥ 0 ∧ t′� = t − 1

• Transition system

• Transition system

• is a simulation from transition
system to transition system if for all
-transitions ,

• Existence of simulation from to has
the consequence that termination of
implies termination of

• If have a terminating condition for
then we can get a sufficient terminating
condition for as

A = ⟨SA, RA⟩

Ã = ⟨S̃A, R̃A ⟩

p : SA → S̃A
A Ã A

(a, a′ �) ∈ RA
(p(a), p(a′�)) ∈ R̃A

p A Ã
Ã

A

C Ã

A p−1(C)
37

Theory of best abstractions

• is a best abstraction of
within class with respect to a
certain class of simulations, e.g.,
linear simulations

Ã A
𝒞

Transition system A

Best abstraction Ã

Class (over-approximating transition systems)𝒞

Other abstraction B

simulation p simulation q

! simulation q

38

Best abstraction and monotonicity
• We want to get sufficient terminating

conditions for transition system

• Suppose we have a procedure that computes
swf for transition systems in a class

• Using the best abstraction and
simulation , we get sufficient
terminating conditions

• Using some other abstraction and
simulation , we get sufficient
terminating conditions

• Under reasonable conditions, using the best
abstraction yields the weakest terminating
preconditions, compared to using any other
abstraction in

A

𝒞

Ã
p : A → Ã

p−1(swf(Ã))

B
q : A → B

q−1(swf(B))

𝒞

Transition system A

Best abstraction Ã

Class (over-approximating transition systems)𝒞

Other abstraction B

simulation p simulation q

! simulation q

39

Termination analysis of the whole program

Define swf() operator that
finds terminating pre-
conditions for a transition
formula

Define atc() that computes the
approximate transitive closure of
a transition formula

Compositional Recurrence
analysis (Kincaid et al., 2015)

Terminating
preconditions for linear

transition systems with rational
eigenvalues based on (Tiwari,

2004)

Reduce using theory
of best abstractions
in a monotone manner

40

Termination analysis of the whole program
Define swf() operator that
finds terminating pre-
conditions for a transition
formula

Compositional Recurrence
analysis (Kincaid et al., 2015)

Terminating
preconditions for linear
transition systems with

rational eigenvalues
(Tiwari)

Transition formula

Best linear transition
system abstraction with
rational eigenvalues

Example: Transition formula has
abstractions , , , etc. but does

not have a best abstraction

x′� = x ∧ x′ � = 0
x′� = x x′� = 2x x′� = 3x

41

Theorem: transition formulas in LIA have best
abstractions in DATS w.r.t. linear simulations
• DATS: deterministic affine transition system

• State space

•

• cf. TDATS (total deterministic affine transition system)

•

• Note: transition formulas in LIA does not necessarily have best
abstractions in TDATS w.r.t. linear simulations

ℚn

(u, v) ∈ R ⇔ v = Tu + c ∧ Du = d

(u, v) ∈ R ⇔ v = Pu + c

42

Simplifying DATS

• DATS: deterministic affine transition system

•

• Simplification 1: easy to homogenize this into a DLTS (deterministic linear
transition system)

•

• Simplification 2: construct a representation matrix that behaves exactly the
same as on the domain we care about and maps everything else to , then
study the exponentiated version of for the termination of DLTS

(u, v) ∈ R ⇔ v = Tu + c ∧ Du = d

(u′�, v′�) ∈ R ⇔ v′� = T′�u′ � ∧ D′�u′� = 0

T0
T 0

T0

• Define the domain of a transition relation as

• Define the invariant domain of transition relation as

• Intuition: initial states outside of are
certainly terminating pre-states, so only cares
about states inside the invariant domain

dom(R) ≜ {x ∈ S : ∃y . xRy}

R
dom*(R) ≜ ⋂

n∈ℕ

dom(Rn)

dom*

43

Termination analysis of the whole program
Define swf() operator that
finds terminating pre-
conditions for a transition
formula

Compositional Recurrence
analysis (Kincaid et al.)

Terminating
preconditions for linear
transition systems with

rational eigenvalues
(Tiwari)

Transition formula

Best linear transition
system abstraction with
rational eigenvalues

44

Termination analysis of the whole program
Define swf() operator that
finds terminating pre-
conditions for a transition
formula

Compositional Recurrence
analysis (Kincaid et al.)

Terminating
preconditions for linear
transition systems with

rational eigenvalues
(Tiwari)

Transition formula

Best DLTS abstraction
(Kincaid et al., 2018)

Best QDLTS abstraction
(new)

(u, v) ∈ R ⇔ Av = Bu

Next: spectral theory of DLTS

Best LTS abstraction
(Reps et al., 2004)

(u, v) ∈ R ⇔ v = Tu ∧ Du = 0

45

Spectral theory of DLTS
• Spectrum of total deterministic transition systems (TDLTS)

•

• Spectrum of deterministic transition systems (DLTS)

•

• QDLTS: DLTS with rational spectrum

• Theorem: the representation for a QDLTS has rational
eigenvalues

v = Tu

spec(T) ≜ {λ ∈ ℂ : ∃v, v ≠ 0.Tv = λv}

v = Tu ∧ Du = 0

spec(T, D) ≜ {λ ∈ ℂ : ∃v ∈ dom*(T, D), v ≠ 0.Tv = λv}

T0 v = Tu ∧ Du = 0

46

Best QDLTS abstraction
• Theorem: any DLTS has a best abstraction as a QDLTS w.r.t. linear simulations

• Proof is constructive and we give an algorithm to compute the best QDLTS
abstraction

• Algorithm idea: repeatedly construct DLTS with lower dimensions but remains
an over-approximation of the original DLTS, until we obtain a QDLTS or we
run out of dimensions

47

Best QDLTS abstraction restricted to invariant domain is what Tiwari needs

• Properties of a QDLTS:

• Every iteration is a linear
update restricted to a linear
space

• Spectrum of the above DLTS is
all rational

x′� = Tx ∧ Dx = 0

• Another look:

• Starting from within the
invariant domain, the updates
are characterized by

• Eigenvalues of are all
rational

• initial states outside of the
invariant domain are certainly
terminating pre-states

x

x′� = T0x

T0

48

Best QDLTS abstraction restricted to invariant domain is what Tiwari needs

• Tiwari needs:

• Polyhedral guards

• Linear updates in the
loop body

• Update matrix has
rational eigenvalues

x′� = Ax

A

Procedure to compute the
best polyhedral guards

given a transition formula
and simulation

• Another look:

• Starting from within the
invariant domain, the updates
are characterized by

• Eigenvalues of are all
rational

• initial states outside of the
invariant domain are certainly
terminating pre-states

x

x′� = T0x

T0

49

Termination analysis of the whole program
Define swf() operator that
finds terminating pre-
conditions for a transition
formula

Compositional Recurrence
analysis (Kincaid et al.)

Terminating preconditions
for linear transition systems

with rational eigenvalues
(Tiwari)

Transition formula F

Best DLTS abstraction G

Best QDLTS abstraction Q

50

Define swf() operator that
finds terminating pre-
conditions for a transition
formula

Terminating preconditions
for linear transition systems

with rational eigenvalues
(Tiwari)

Transition formula F

Best DLTS abstraction G

Best QDLTS abstraction Q Sufficient preconditions
for to terminateQ

Linear simulation S

Linear simulation T

Sufficient preconditions
for to terminateG

Sufficient preconditions
for to terminateF

Monotone

Monotone

Monotone

51

How we achieve compositionality
and predictability?
• Compositionality: compute termination conditions for a program by analyzing its components and

composing the results

• Extend Tarjan’s framework to termination analysis

• Predictability: give a monotone procedure that computes a sufficient terminating precondition for a
program

• Exploit the compositional framework

• Reduce termination of programs to termination of single loops (swf operator)

• Access to a summary for the body of each loop (atc operator)

• Utilize decision procedure for linear loops to generate terminating pre-conditions for summaries

• Abstract transition formulas into linear models that can be handled by Tiwari’s method
52

Preliminary Experimental Results

• SV-COMP termination benchmarks

• Not geared towards conditional
termination

• Subset containing only terminating
programs

• Conclusions

• Monotonicity and compositionally
come at a cost

Terminating benchmark programs proved

0

17.5

35

52.5

70

restricted crafted recursive rec-simple

Ultimate Automizer
Duet

Running Speed Comparison: Duet vs Ultimate Automizer

Ru
nn

in
g

tim
e

(s
)

0.00

7.50

15.00

22.50

30.00

Benchmark programs

Ultimate Automizer
Duet

53

Future work
• Create more conditional termination benchmarks and evaluate the tool on

those benchmarks

• Use termination arguments to enhance loop invariant generation

• Monotone conditional termination analysis for other ranking function
templates

• Explore how mathematical theory of dynamical systems could further help
with program analysis

54

References
• [1] B. Cook, A. Podelski, and A. Rybalchenko, “Abstraction Refinement for Termination.,” SAS, 2005.

• [2] A. Tiwari, “Termination of Linear Programs.,” CAV, 2004.

• [3] C. Calcagno, D. Distefano, P. W. O'Hearn, and H. Yang, “Compositional shape analysis by means of bi-abduction.,”
POPL, 2009.

• [4] R. E. Tarjan, “A Unified Approach to Path Problems,” Journal of the ACM (JACM), vol. 28, no. 3, pp. 577–593, Jul.
1981.

• [5] T. W. Reps, S. Sagiv, and G. Yorsh, “Symbolic Implementation of the Best Transformer.,” VMCAI, 2004.

• [6] R. Jhala and R. Majumdar, “Software model checking.,” ACM Comput. Surv., 2009.

• [7] L. Gonnord, D. Monniaux, and G. Radanne, “Synthesis of Ranking Functions using Extremal
Counterexamples,” {ACM} SIGPLAN Notices, vol. 50, no. 6, pp. 608–618, Jun. 2015.

• [8] T. W. Reps, S. Horwitz, and S. Sagiv, “Precise Interprocedural Dataflow Analysis via Graph Reachability.,” POPL,
1995.

• [9] A. Farzan and Z. Kincaid, “Compositional Recurrence Analysis.,” FMCAD, 2015.

• [10] K. L. McMillan, “Lazy Abstraction with Interpolants.,” CAV, 2006.

• [11] M. Bozga, R. Iosif, and F. Konecný, “Deciding Conditional Termination.,” TACAS, 2012.
55

Thanks for your attention!

56

