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A Compositional and Monotone 
Approach to Termination
Towards a more dependable and scalable termination analysis
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Background
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program correctness =  
partial correctness + termination proof
It does the right thing if it terminates It does terminate 
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Programs as transition systems
• A program statement defines a transition 

on the state space 


• Transition system 


• : state space


• : transition relation

S

⟨S, R⟩

S

R ⊆ S × S
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Ranking functions
• Loop terminates iff it has a ranking 

function


• Ranking function  for a loop with 
state space  and body 


•  is a mapping from state 
space  into a set  equipped 
with a well-founded relation 


• 


• Examples: linear ranking functions, 
lexicographic linear ranking functions

r
S R

r : S → B
S B

≻

(s1, s2) ∈ R ⇒ r(s1) ≻ r(s2)

!// ranking function: x 
while (x > 0) { 
    x = x - 1; 
}

!// ranking function: < i, j > 
while (i > 0) { 
    if (j > 0) { 
        j!--; 
    } else { 
        j = 100; 
        i!--; 
    } 
} 
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Theory Practice

• Complete procedure for lexicographic 
ranking function synthesis for a single 
loop (Gonnord et al., 2015)


• Deciding termination of linear transition 
systems (Tiwari, 2004)


• Weakest terminating pre-conditions for 
octagonal relations (Bozga et al., 2012)


• …

• Repeatedly sample a lasso-shaped trace 
and synthesize ranking function for it (Cook 
et al., 2006)


• Extend single-loop ranking function 
synthesis to whole program termination by 
analyzing paths between cut points 
(Gonnord et al., 2015)


• Guess ranking function candidates, and 
then synthesize conditions under which they 
become real ranking functions (Cook et al., 
2008)


• …
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Motivation
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— Peter O’Hearn

“Because Infer is compositional, it can operate 
incrementally, quickly producing results on a code diff 
even if the diff is part of a codebase in the millions of 
lines”
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analyze each loop in isolation and combine the analysis results 
It brings us: parallelism and scalability, incremental analysis, etc.

Want: a compositional analysis of termination
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Want: a compositional analysis of termination

Requires: an analysis that generates 
sufficient conditions for termination
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• Consider a compositional 
analysis for termination that 
looks at each loop in isolation


• When analyzing the while loop, 
we don’t know what values 
could x take


• The analysis need to figure out a 
sufficient condition for 
termination and checks if the 
context implies that condition

if (!__VERIFIER_nondet_int() !!= 0) { 
    x = 1; 
} else { 
    x = -1; 
} 

!// conditions: x > 0 or x < 0 
while (y < 100 !&& z < 100) { 
    y = y + x; 
    z = z - x; 
} 
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— Leino and Moskal

“Tools can understand our programs, but 
we cannot understand our tools”
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widely used in modern tools, but lead to unpredictability in the analysis

Heuristics
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• #1 tool in Software Verification 
Competition termination category 

• Supports linear, lexicographic 
linear, multiphase, piecewise 
ranking functions, etc. 

• Can prove this program 
terminates within a few seconds, 
but …

int main() { 
    int x, y, z, a, b; 
    int n;   
    
      while (z !>= 0 !&& !__VERIFIER_nondet_int()) { 
          z = z - 1; 
      } 
         
      if (a !== b) { 
          while (x !>= 0 !&& y !>= 0) { 
              y = y - z; 
              while (z > 0) { 
                  z = z - 1; 
                  y = y + 2 * z - x; 
              } 
              x = x + a - b - 1; 
          }  
      } 

    return 0; 
}

Ultimate Automizer
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int main() { 
    int x, y, z, a, b; 
    int n; 
     
    if (z > 999999) { 

        while (z !>= 0 !&& !__VERIFIER_nondet_int()) { 
            z = z - 1; 
        } 
         
        if (a !== b) { 
            while (x !>= 0 !&& y !>= 0) { 
                y = y - z; 
                while (z > 0) { 
                    z = z - 1; 
                    y = y + 2 * z - x; 
                } 
                x = x + a - b - 1; 
            }  
        } 

    } 
     
    return 0; 
}

Ultimate Automizer
• #1 tool in Software Verification 

Competition termination category 
• Supports linear, lexicographic 

linear, multiphase, piecewise 
ranking functions, etc. 

• Can prove this program 
terminates within a few seconds, 
but it will not terminate after 30 
minutes on this slightly modified 
program which ought to be 
“easier” to reason about
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produces a more precise result when given more precise information 
Want: a predictable analysis of termination
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Theory Practice

This work presents a termination analysis that is:


• Predictable


• Adding information to program leads to more 
precise analysis results


• Compositional 

• Analyzing on a per-loop basis
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A monotone and compositional 
analysis for conditional termination
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How we achieve compositionality 
and predictability?
• Compositionality: compute termination conditions for a program by analyzing its components and 

composing the results 

• Extend Tarjan’s framework to termination analysis


• Predictability: give a monotone procedure that computes a sufficient terminating precondition for a 
program 

• Exploit the compositional framework


• Reduce termination of programs to termination of single loops


• Access to a summary for the body of each loop


• Utilize decision procedure for linear loops to generate terminating pre-conditions for summaries


• Abstract transition formulas into linear models that can be handled by Tiwari’s method
19



a ∈ Σ
e ∈ RegExp(Σ)::= a ∣ 0 ∣ 1 ∣ e1 + e2 ∣ e1e2 ∣ e*

An algebraic framework for 
program analysis

• (Tarjan, 1981) views the control flow graph 
of the program as a labelled graph where 
labels are transitions relations


• Can efficiently compute regular 
expressions that recognize all paths 
between two program locations


• Certain program analysis can be defined 
using interpretation of regular 
expressions that represent sets of paths
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Interpreting path expressions as transition formulas

• Transition formula 


• A formula in linear integer arithmetic 
over program variables and primed 
program variables, and loop counter


• Describes a transition relation


• Compositional recurrence analysis  
(Kincaid et al., 2015) interprets path 
expressions as transition formulas

TF x ∈ Var
n ∈ ℤ

y ∈ BoundVar
t ∈ Term::= x ∣ x′� ∣ y ∣ n ∣ n ⋅ t ∣ t1 + t2

T ∈ TF::= t1 < t2 ∣ t1 = t2 ∣ T1 ∧ T2 ∣ T1 ∨ T2 ∣ ∃y . T

T1 +𝒯 T2 ≜ T1 ∨ T2

0𝒯 ≜ False
1𝒯 ≜ ⋀

x∈Var
x′� = x

T1 ⋅𝒯 T2 ≜ ∃Var′�′� . T1[Var′� ↦ Var′ �′ �] ∧ T2[Var ↦ Var′�′ �]

T*𝒯 ≜ …
𝒯[](u, x := e, v)]] ≜ x′� = e ∧ ⋀

y≠x∈Var
y′� = y

𝒯[](u, assume(c), v)]] ≜ c ∧ ⋀
x∈Var

x′� = x
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a ∈ Σ
e ∈ RegExp(Σ)::= a ∣ 0 ∣ 1 ∣ e1 + e2 ∣ e1e2 ∣ e*

f ∈ ω-RegExp(Σ)::= eω ∣ e; f ∣ f1 ⊕ f2

An algebraic framework for 
compositional termination analysis

• We augment Tarjan’s framework with -regular expressions:


• State formula 


• formula in LIA over program variables that describes a 
set of program states


• Termination analysis defined as interpretation of -path 
expressions


• atc: , approximate transitive closure operator 
provides the summary of loop body (Kincaid et al., 2015)


• swf: , gives a set of initial states from which 
the transition is guaranteed to terminate


• Let  be the set of -paths starting at program entry. If  
if a state from which there is an non-terminating 
execution, then 

ω

SF

ω

TF → TF

TF → SF

p ω s

s ⊧ 𝒯(p)

S𝒯 ≜ TF
T1 +𝒯 T2 ≜ T1 ∨ T2

0𝒯 ≜ False
1𝒯 ≜ ⋀

x∈Var
x′� = x

T1 ⋅𝒯 T2 ≜ ∃Var′�′ � . T1[Var′ � ↦ Var′ �′�] ∧ T2[Var ↦ Var′�′�]

T*𝒯 ≜ atc(T )

𝒯[](u, x := e, v)]] ≜ x′� = e ∧ ⋀
y≠x∈Var

y′� = y

𝒯[](u, assume(c), v)]] ≜ c ∧ ⋀
x∈Var

x′� = x

L𝒯 ≜ SF
Tω𝒯 ≜ ¬swf(T )

T;𝒯 S ≜ ∃Var′� . T ∧ S[Var ↦ Var′�]
S1 ⊕𝒯 S2 ≜ S1 ∨ S2
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How we achieve compositionality 
and predictability?
• Compositionality: compute termination conditions for a program by analyzing its components and 

composing the results 

• Extend Tarjan’s framework to termination analysis


• Predictability: give a monotone procedure that computes a sufficient terminating precondition for a 
program 

• Exploit the compositional framework


• Reduce termination of programs to termination of single loops (swf operator)


• Access to a summary for the body of each loop (atc operator)


• Utilize decision procedure for linear loops to generate terminating pre-conditions for summaries


• Abstract transition formulas into linear models that can be handled by Tiwari’s method
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Termination analysis of the whole program

Define swf() operator that 
finds terminating pre-
conditions for a transition 
formula

Define atc() that computes the 
approximate transitive closure of 
a transition formula 

Compositional Recurrence 
analysis (Kincaid et al., 2015)

Terminating 
preconditions for linear 

transition systems with rational 
eigenvalues based on (Tiwari, 

2004)

Reduce 


in a monotone manner
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Tiwari has a way to synthesize 
conditions for termination, but …
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Long-term Dynamics of Linear Transition Systems
• Suppose the loop to the right does not terminate 

after  iterations, then what are the values of , , 
and ?

k x y
z

while (x > 0) { 
    x = x + y; 
    y = y + z;  
} 

•



•

x′�

y′�

z′ �

= [
1 1 0
0 1 1
0 0 1] [

x
y
z]

x(k)

y(k)

z(k)

= [
1 1 0
0 1 1
0 0 1]

k x(0)

y(0)

z(0)
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Long-term Dynamics of Linear Transition Systems

• 


• 


• 


• Obviously the value of  affects termination, so 
we look at 


•

z(k) = z(0)

y(k) = y(0) + kz(0)

x(k) = x(0) + ky(0) +
k(k − 1)

2
z(0)

x

x(k) = x(0) + k(y(0) −
1
2

z(0)) + k2 z(0)

2

while (x > 0) { 
    x = x + y; 
    y = y + z;  
} 

• Suppose the loop to the right does not terminate 
after  iterations, then what are the values of , , 
and ?

k x y
z
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Long-term Dynamics of Linear Transition Systems

• 


• Consider when  gets large enough 


• If  then 


• If  but , then 




• If , , then 

x(k) = x(0) + k(y(0) −
1
2

z(0)) + k2 z(0)

2
k k2 ≫ k ≫ 1

z(0)

2
≠ 0 x(k) ≈ k2 z(0)

2
z(0)

2
= 0 y(0) −

1
2

z(0) ≠ 0

x(k) ≈ k(y(0) −
1
2

z(0))

z(0)

2
= 0 y(0) −

1
2

z(0) = 0 x(k) ≈ x(0)

while (x > 0) { 
    x = x + y; 
    y = y + z;  
} 
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Long-term Dynamics of Linear Transition Systems

• If  then 


• If  but , then 




• If , , then 

z(0)

2
≠ 0 x(k) ≈ k2 z(0)

2
> 0 ⇒

z(0)

2
> 0

z(0)

2
= 0 y(0) −

1
2

z(0) ≠ 0

x(k) ≈ k(y(0) −
1
2

z(0)) > 0 ⇒ y(0) −
1
2

z(0) > 0

z(0)

2
= 0 y(0) −

1
2

z(0) = 0 x(k) ≈ x(0) > 0

If the loop never terminates,  can actually 
get large enough and  still holds

k
x(k) > 0

while (x > 0) { 
    x = x + y; 
    y = y + z;  
} 
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Long-term Dynamics of Linear Transition Systems

• , or


•    , or


•     

z(0)

2
> 0

z(0)

2
= 0 ∧ y(0) −

1
2

z(0) > 0

z(0)

2
= 0 ∧ y(0) −

1
2

z(0) = 0 ∧ x(0) > 0

Thus non-termination implies the following:

while (x > 0) { 
    x = x + y; 
    y = y + z;  
} 

The negation of the above condition implies termination! (Tiwari, 2004)

z < 0
∨ (z = 0 ∧ y < 0)
∨ (z = 0 ∧ y = 0 ∧ x ≤ 0)
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Dominant Term Analysis (DTA) exploits long-time dynamics

• Using Tiwari’s analysis to generate 
terminating conditions requires


1. Finding loop guards expressed in 
linear terms of program variables 
(polyhedral guards)


2. Linear loop update as matrix 
multiplication 


• Exists a linear ordering on the 
eigenvalues of 

x′� = Ax

A

while (x > 0) { 
    x = x + y; 
    y = y + z;  
} 

x(k)

y(k)

z(k)

= [
1 1 0
0 1 1
0 0 1]

k x(0)

y(0)

z(0)

k2 ≫ k ≫ 1
31



Q: When is this possible? What if we 
have to compare  and ? 

A: That is hard to do. Want to consider only 
matrices with real/rational eigenvalues

e
kπ
3 i e

3kπ
4 i

Dominant Term Analysis (DTA) exploits long-time dynamics

• Using Tiwari’s analysis to generate 
terminating conditions requires


1. Finding loop guards expressed in 
linear terms of program variables 
(polyhedral guards)


2. Linear loop update as matrix 
multiplication 


• Exists a linear ordering on the 
eigenvalues of 

x′� = Ax

A
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Tiwari has a way to synthesize 
conditions for termination, but …
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only applies to linear transition systems with 
polyhedral guards and rational spectra

Tiwari has a way to synthesize 
conditions for termination, but

34



Termination analysis of the whole program

Define swf() operator that 
finds terminating pre-
conditions for a transition 
formula

Define atc() that computes the 
approximate transitive closure of 
a transition formula 

Compositional Recurrence 
analysis (Kincaid et al., 2015)

Terminating 
preconditions for linear 

transition systems with rational 
eigenvalues based on (Tiwari, 

2004)

Reduce using theory 
of best abstractions 
in a monotone manner
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Simulation as abstraction

a a′�

p(a) p(a′�)
R̃A

RA

p p
A

Ã

• Transition system 


• Transition system 


•  is a simulation from transition 
system  to transition system  if for all 
-transitions , 




• Existence of simulation  from  to  has 
the consequence that termination of  
implies termination of 


• If have a terminating condition  for  
then we can get a sufficient terminating 
condition for  as  

A = ⟨SA, RA⟩

Ã = ⟨S̃A, R̃A ⟩

p : SA → S̃A
A Ã A

(a, a′ �) ∈ RA
(p(a), p(a′�)) ∈ R̃A

p A Ã
Ã

A

C Ã

A p−1(C)
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Simulation as abstraction

a a′�

p(a) p(a′�)
R̃A

RA

p p
A

Ã

while (x + y !>= 0) { 
    if (!__VERIFIER_nondet_int()) { 
        x = x - 1; 
    } else { 
        y = y - 1; 
    } 
}

Transition formula of : A
x + y ≥ 0 ∧ ((x′� = x − 1 ∧ y′ � = y) ∨ (y′� = y − 1 ∧ x′� = x))

Simulation s : [x
y] → x + y

Transition formula of : Ã
t ≥ 0 ∧ t′� = t − 1

• Transition system 


• Transition system 


•  is a simulation from transition 
system  to transition system  if for all 
-transitions , 




• Existence of simulation  from  to  has 
the consequence that termination of  
implies termination of 


• If have a terminating condition  for  
then we can get a sufficient terminating 
condition for  as  

A = ⟨SA, RA⟩

Ã = ⟨S̃A, R̃A ⟩

p : SA → S̃A
A Ã A

(a, a′ �) ∈ RA
(p(a), p(a′�)) ∈ R̃A

p A Ã
Ã

A

C Ã

A p−1(C)
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Theory of best abstractions

•  is a best abstraction of  
within class  with respect to a 
certain class of simulations, e.g., 
linear simulations

Ã A
𝒞

Transition system A

Best abstraction Ã

Class  (over-approximating transition systems)𝒞

Other abstraction B

simulation p simulation q

! simulation q
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Best abstraction and monotonicity
• We want to get sufficient terminating 

conditions for transition system 


• Suppose we have a procedure that computes 
swf for transition systems in a class 


• Using the best abstraction  and 
simulation , we get sufficient 
terminating conditions 


• Using some other abstraction  and 
simulation , we get sufficient 
terminating conditions 


• Under reasonable conditions, using the best 
abstraction yields the weakest terminating 
preconditions, compared to using any other 
abstraction in 

A

𝒞

Ã
p : A → Ã

p−1(swf( Ã ))

B
q : A → B

q−1(swf(B))

𝒞

Transition system A

Best abstraction Ã

Class  (over-approximating transition systems)𝒞

Other abstraction B

simulation p simulation q

! simulation q
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Termination analysis of the whole program

Define swf() operator that 
finds terminating pre-
conditions for a transition 
formula

Define atc() that computes the 
approximate transitive closure of 
a transition formula 

Compositional Recurrence 
analysis (Kincaid et al., 2015)

Terminating 
preconditions for linear 

transition systems with rational 
eigenvalues based on (Tiwari, 

2004)

Reduce using theory 
of best abstractions 
in a monotone manner
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Termination analysis of the whole program
Define swf() operator that 
finds terminating pre-
conditions for a transition 
formula

Compositional Recurrence 
analysis (Kincaid et al., 2015)

Terminating 
preconditions for linear 
transition systems with 

rational eigenvalues 
(Tiwari)

Transition formula

Best linear transition 
system abstraction with 
rational eigenvalues

Example: Transition formula  has 
abstractions , , , etc. but does 

not have a best abstraction

x′� = x ∧ x′ � = 0
x′� = x x′� = 2x x′� = 3x

41



Theorem: transition formulas in LIA have best 
abstractions in DATS w.r.t. linear simulations
• DATS: deterministic affine transition system


• State space 


• 


• cf. TDATS (total deterministic affine transition system)


• 


• Note: transition formulas in LIA does not necessarily have best 
abstractions in TDATS w.r.t. linear simulations

ℚn

(u, v) ∈ R ⇔ v = Tu + c ∧ Du = d

(u, v) ∈ R ⇔ v = Pu + c

42



Simplifying DATS

• DATS: deterministic affine transition system


• 


• Simplification 1: easy to homogenize this into a DLTS (deterministic linear 
transition system)


• 


• Simplification 2: construct a representation matrix  that behaves exactly the 
same as  on the domain we care about and maps everything else to , then 
study the exponentiated version of  for the termination of DLTS

(u, v) ∈ R ⇔ v = Tu + c ∧ Du = d

(u′�, v′�) ∈ R ⇔ v′� = T′�u′ � ∧ D′�u′� = 0

T0
T 0

T0

• Define the domain of a transition relation as 



• Define the invariant domain of transition relation  as 



• Intuition: initial states outside of  are 
certainly terminating pre-states, so only cares 
about states inside the invariant domain

dom(R) ≜ {x ∈ S : ∃y . xRy}

R
dom*(R) ≜ ⋂

n∈ℕ

dom(Rn)

dom*
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Termination analysis of the whole program
Define swf() operator that 
finds terminating pre-
conditions for a transition 
formula

Compositional Recurrence 
analysis (Kincaid et al.)

Terminating 
preconditions for linear 
transition systems with 

rational eigenvalues 
(Tiwari)

Transition formula

Best linear transition 
system abstraction with 
rational eigenvalues
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Termination analysis of the whole program
Define swf() operator that 
finds terminating pre-
conditions for a transition 
formula

Compositional Recurrence 
analysis (Kincaid et al.)

Terminating 
preconditions for linear 
transition systems with 

rational eigenvalues 
(Tiwari)

Transition formula

Best DLTS abstraction 
(Kincaid et al., 2018)

Best QDLTS abstraction 
(new)

(u, v) ∈ R ⇔ Av = Bu

Next: spectral theory of DLTS

Best LTS abstraction 
(Reps et al., 2004)

(u, v) ∈ R ⇔ v = Tu ∧ Du = 0
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Spectral theory of DLTS
• Spectrum of total deterministic transition systems (TDLTS) 


• 


• Spectrum of deterministic transition systems (DLTS) 


• 


• QDLTS: DLTS with rational spectrum


• Theorem: the representation  for a QDLTS  has rational 
eigenvalues

v = Tu

spec(T) ≜ {λ ∈ ℂ : ∃v, v ≠ 0.Tv = λv}

v = Tu ∧ Du = 0

spec(T, D) ≜ {λ ∈ ℂ : ∃v ∈ dom*(T, D), v ≠ 0.Tv = λv}

T0 v = Tu ∧ Du = 0

46



Best QDLTS abstraction
• Theorem: any DLTS has a best abstraction as a QDLTS w.r.t. linear simulations


• Proof is constructive and we give an algorithm to compute the best QDLTS 
abstraction


• Algorithm idea: repeatedly construct DLTS with lower dimensions but remains 
an over-approximation of the original DLTS, until we obtain a QDLTS or we 
run out of dimensions
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Best QDLTS abstraction restricted to invariant domain is what Tiwari needs

• Properties of a QDLTS:


• Every iteration is a linear 
update restricted to a linear 
space 


• Spectrum of the above DLTS is 
all rational

x′� = Tx ∧ Dx = 0

• Another look:


• Starting from  within the 
invariant domain, the updates 
are characterized by 


• Eigenvalues of  are all 
rational


• initial states outside of the 
invariant domain are certainly 
terminating pre-states

x

x′� = T0x

T0
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Best QDLTS abstraction restricted to invariant domain is what Tiwari needs

• Tiwari needs:


• Polyhedral guards


• Linear updates in the 
loop body 


• Update matrix  has 
rational eigenvalues

x′� = Ax

A

Procedure to compute the 
best polyhedral guards 

given a transition formula 
and simulation

• Another look:


• Starting from  within the 
invariant domain, the updates 
are characterized by 


• Eigenvalues of  are all 
rational


• initial states outside of the 
invariant domain are certainly 
terminating pre-states

x

x′� = T0x

T0
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Termination analysis of the whole program
Define swf() operator that 
finds terminating pre-
conditions for a transition 
formula

Compositional Recurrence 
analysis (Kincaid et al.)

Terminating preconditions 
for linear transition systems 

with rational eigenvalues 
(Tiwari)

Transition formula F

Best DLTS abstraction G

Best QDLTS abstraction Q
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Define swf() operator that 
finds terminating pre-
conditions for a transition 
formula

Terminating preconditions 
for linear transition systems 

with rational eigenvalues 
(Tiwari)

Transition formula F

Best DLTS abstraction G

Best QDLTS abstraction Q Sufficient preconditions 
for  to terminateQ

Linear simulation S

Linear simulation T

Sufficient preconditions 
for  to terminateG

Sufficient preconditions 
for  to terminateF

Monotone

Monotone

Monotone
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How we achieve compositionality 
and predictability?
• Compositionality: compute termination conditions for a program by analyzing its components and 

composing the results 

• Extend Tarjan’s framework to termination analysis


• Predictability: give a monotone procedure that computes a sufficient terminating precondition for a 
program 

• Exploit the compositional framework


• Reduce termination of programs to termination of single loops (swf operator)


• Access to a summary for the body of each loop (atc operator)


• Utilize decision procedure for linear loops to generate terminating pre-conditions for summaries


• Abstract transition formulas into linear models that can be handled by Tiwari’s method
52



Preliminary Experimental Results

• SV-COMP termination benchmarks


• Not geared towards conditional 
termination


• Subset containing only terminating 
programs


• Conclusions


• Monotonicity and compositionally 
come at a cost

# Terminating benchmark programs proved

0

17.5

35

52.5

70

restricted crafted recursive rec-simple

Ultimate Automizer
Duet

Running Speed Comparison: Duet vs Ultimate Automizer

Ru
nn

in
g 

tim
e 

(s
)

0.00

7.50

15.00

22.50

30.00

Benchmark programs

Ultimate Automizer
Duet
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Future work
• Create more conditional termination benchmarks and evaluate the tool on 

those benchmarks


• Use termination arguments to enhance loop invariant generation


• Monotone conditional termination analysis for other ranking function 
templates


• Explore how mathematical theory of dynamical systems could further help 
with program analysis
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