A Compositional and Monotone Approach to Termination Towards a more dependable and scalable termination analysis

Shaowei Zhu **Advisor: Zachary Kincaid Princeton University** May 2020

Background

program correctness = partial correctness + termination proof

It does the right thing if it terminates

It does terminate

Programs as transition systems

- A program statement defines a transition on the state space S
- Transition system $\langle S, R \rangle$
 - S: state space
 - $R \subseteq S \times S$: transition relation

Ranking functions

- Loop terminates iff it has a ranking function
- Ranking function r for a loop with state space S and body R
 - $r: S \rightarrow B$ is a mapping from state space S into a set B equipped with a well-founded relation >
 - $(s_1, s_2) \in R \Rightarrow r(s_1) > r(s_2)$
- Examples: linear ranking functions, lexicographic linear ranking functions

// ranking function: x while (x > 0) { $\mathbf{x} = \mathbf{x} - \mathbf{1};$

// ranking function: < i, j > while (i > 0) { if (j > 0) { j--; } else { = 100;

- Complete procedure for lexicographic ranking function synthesis for a single loop (Gonnord et al., 2015)
- Deciding termination of linear transition systems (Tiwari, 2004)
- Weakest terminating pre-conditions for octagonal relations (Bozga et al., 2012)

- Repeatedly sample a lasso-shaped trace and synthesize ranking function for it (Cook et al., 2006)
- Extend single-loop ranking function synthesis to whole program termination by analyzing paths between cut points (Gonnord et al., 2015)
- Guess ranking function candidates, and then synthesize conditions under which they become real ranking functions (Cook et al., 2008)

Notivation

"Because Infer is *compositional*, it can operate incrementally, quickly producing results on a code diff even if the diff is part of a codebase in the millions of lines"

– Peter O'Hearn

Want: a compositional analysis of termination analyze each loop in isolation and combine the analysis results It brings us: parallelism and scalability, incremental analysis, etc.

Want: a compositional analysis of termination

Requires: an analysis that generates sufficient conditions for termination

- Consider a compositional analysis for termination that looks at each loop in isolation
- When analyzing the while loop, we don't know what values could x take
- The analysis need to figure out a sufficient condition for termination and checks if the context implies that condition

if (__VERIFIER_nondet_int() \neq 0) { x = 1;} else { x = -1;

// conditions: x > 0 or x < 0while (y < 100 & z < 100) { y = y + x;z = z - x;

"Tools can understand our programs, but we cannot understand our tools"

– Leino and Moskal

widely used in modern tools, but lead to unpredictability in the analysis

Ultimate Automizer

- #1 tool in Software Verification
 Competition termination category
- Supports linear, lexicographic linear, multiphase, piecewise ranking functions, etc.
- Can prove this program terminates within a few seconds, but ...

```
int main() {
    int x, y, z, a, b;
    int n;
      while (z \ge 0 \& WERIFIER_nondet_int()) 
          z = z - 1;
      }
      if (a = b) {
          while (x \ge 0 \& y \ge 0) {
              y = y - z;
              while (z > 0) {
                  z = z - 1;
                  y = y + 2 * z - x;
              }
              x = x + a - b - 1;
    return 0;
```

Ultimate Automizer

- #1 tool in Software Verification Competition termination category
- Supports linear, lexicographic linear, multiphase, piecewise ranking functions, etc.
- Can prove this program terminates within a few seconds, but it will not terminate after 30 minutes on this slightly modified program which ought to be "easier" to reason about

15

Want: a predictable analysis of termination produces a more precise result when given more precise information

This work presents a termination analysis that is:

Predictable

- precise analysis results
- Compositional
 - Analyzing on a per-loop basis

Adding information to program leads to more

A monotone and compositional

analysis for conditional termination

How we achieve compositionality and predictability?

- <u>composing the results</u>
 - Extend Tarjan's framework to termination analysis
- program
 - Exploit the compositional framework
 - Reduce termination of programs to termination of single loops
 - Access to a summary for the body of each loop \bullet
 - - Abstract transition formulas into linear models that can be handled by Tiwari's method

Compositionality: compute termination conditions for a program by analyzing its components and

<u>Predictability: give a monotone procedure that computes a sufficient terminating precondition for a</u>

Utilize decision procedure for linear loops to generate terminating pre-conditions for summaries

19

An algebraic framework for program analysis

- (Tarjan, 1981) views the control flow graph of the program as a labelled graph where labels are transitions relations
 - Can efficiently compute regular expressions that recognize all paths between two program locations
 - Certain program analysis can be defined using interpretation of regular expressions that represent sets of paths

$a \in \Sigma$ $e \in \text{RegExp}(\Sigma) ::= a \mid 0 \mid 1 \mid e_1 + e_2 \mid e_1e_2 \mid e^*$

Interpreting path expressions as transition formulas

- Transition formula \mathbf{TF}
 - A formula in linear integer arithmetic over program variables and primed program variables, and loop counter
 - Describes a transition relation
- Compositional recurrence analysis (Kincaid et al., 2015) interprets path expressions as transition formulas

 $x \in Var$ $n \in \mathbb{Z}$ $y \in \mathsf{BoundVar}$ $t \in \text{Term} ::= x \mid x' \mid y \mid n \mid n \cdot t \mid t_1 + t_2$ $T \in \mathsf{TF} ::= t_1 < t_2 \mid t_1 = t_2 \mid T_1 \land T_2 \mid T_1 \lor T_2 \mid \exists y . T$

 $T_1 + {}^{\mathcal{T}} T_2 \triangleq T_1 \lor T_2$ $0^{\mathcal{T}} \triangleq \text{False}$ $1^{\mathscr{T}} \triangleq \bigwedge x' = x$ x∈Var $T_1 \cdot \mathcal{T}_2 \triangleq \exists \operatorname{Var}'' \cdot T_1[\operatorname{Var}' \mapsto \operatorname{Var}''] \wedge T_2[\operatorname{Var} \mapsto \operatorname{Var}'']$ $T^{*^{\mathscr{T}}} \triangleq$ $\mathcal{T}[[(u, x := e, v)]] \triangleq x' = e \land \qquad \bigwedge \qquad y' = y$ y≠x∈Var $\mathcal{T}[(u, \operatorname{assume}(c), v)]] \triangleq c \land \bigwedge x' = x$ x∈Var

An algebraic framework for compositional termination analys

We augment Tarjan's framework with ω -regular expressions

- State formula SF
 - formula in LIA over program variables that describes set of program states
- Termination analysis defined as interpretation of ω -path expressions
 - atc: $TF \rightarrow TF$, approximate transitive closure opera provides the summary of loop body (Kincaid et al., 20)
 - swf: $TF \rightarrow SF,$ gives a set of initial states from whic the transition is guaranteed to terminate
 - Let p be the set of ω -paths starting at program entry, if a state from which there is an non-terminating execution, then $s \models \mathcal{T}(p)$

22

$$a \in \Sigma$$

$$e \in \operatorname{RegExp}(\Sigma) ::= a \mid 0 \mid 1 \mid e_{1} + e_{2} \mid e_{1}e_{2} \mid e^{*}$$

$$f \in \omega \operatorname{RegExp}(\Sigma) ::= e^{\omega} \mid e; f \mid f_{1} \oplus f_{2}$$

$$S^{\mathcal{T}} \triangleq \operatorname{TF}$$

$$T_{1} + ^{\mathcal{T}}T_{2} \triangleq T_{1} \vee T_{2}$$

$$0^{\mathcal{T}} \triangleq \operatorname{False}$$

$$1^{\mathcal{T}} \triangleq \bigwedge_{x \in \operatorname{Var}} x' = x$$

$$T_{1} \cdot ^{\mathcal{T}}T_{2} \triangleq \exists \operatorname{Var}'' \cdot T_{1} |\operatorname{Var}' \mapsto \operatorname{Var}''| \wedge T_{2} |\operatorname{Var}$$

$$T^{*\mathcal{T}} \triangleq \operatorname{ato}(T)$$

$$S^{\mathcal{T}}[[(u, x := e, v)]] \triangleq x' = e \wedge \bigwedge_{y \neq x \in \operatorname{Var}} y' = y$$

$$S^{\mathcal{T}}[(u, \operatorname{assume}(c), v)]] \triangleq c \wedge \bigwedge_{x \in \operatorname{Var}} x' = x$$

$$L^{\mathcal{T}} \triangleq \operatorname{SF}$$

$$T^{\omega^{\mathcal{T}}} \triangleq \exists \operatorname{Var}' \cdot T \wedge S |\operatorname{Var} \mapsto \operatorname{Var}'|$$

$$S_{1} \oplus ^{\mathcal{T}}S_{2} \triangleq S_{1} \vee S_{2}$$

How we achieve compositionality and predictability?

- composing the results
 - Extend Tarjan's framework to termination analysis
- <u>program</u>
 - Exploit the compositional framework
 - Reduce termination of programs to termination of single loops (swf_perator)
 - Access to a summary for the body of each loop (atc operator)
 - - Abstract transition formulas into linear models that can be handled by Tiwari's method

Compositionality: compute termination conditions for a program by analyzing its components and

Predictability: give a monotone procedure that computes a sufficient terminating precondition for a

Utilize decision procedure for linear loops to generate terminating pre-conditions for summaries

Termination analysis of the whole program

Define swf() operator that finds terminating preconditions for a transition formula

Reduce

in a monotone manner

Terminating preconditions for linear transition systems with rational eigenvalues based on (Tiwari, 2004) Compositional Recurrence analysis (Kincaid et al., 2015)

Tiwari has a way to synthesize conditions for termination, but ...

Long-term Dynamics of Linear Transition Systems

 Suppose the loop to the right does not terminate after k iterations, then what are the values of x, y, yand z?

while (x > 0) { X = X + Y $\underline{Y} = \underline{Y} + \underline{Z};$

Long-term Dynamics of Linear Transition Systems Suppose the loop to the right does not terminate after k iterations, then what are the values of x, y, y

and z?

•
$$z^{(k)} = z^{(0)}$$

•
$$y^{(k)} = y^{(0)} + kz^{(0)}$$

•
$$x^{(k)} = x^{(0)} + ky^{(0)} + \frac{k(k-1)}{2}z^{(0)}$$

Obviously the value of x affects termination, so we look at

•
$$x^{(k)} = x^{(0)} + k(y^{(0)} - \frac{1}{2}z^{(0)}) + k^{2}$$

while (x > 0) { X = X + V;Y = Y + Z;

Long-term Dynamics of Linear Transition Systems • $x^{(k)} = x^{(0)} + k(y^{(0)} - \frac{1}{2}z^{(0)}) + k^2\frac{z^{(0)}}{2}$

• Consider when k gets large enough $k^2 \gg k \gg 1$

while (x > 0) { X = X + Y;y = y + z;

28

Long-term Dynamics of Linear Transition Systems

If the loop never terminates, k can actually get large enough and $x^{(k)} > 0$ still holds • If $\frac{z^{(0)}}{2} \neq 0$ then $x^{(k)} \approx k^2 \frac{z^{(0)}}{2} > 0 \Rightarrow \frac{z^{(0)}}{2} > 0$ • If $\frac{z^{(0)}}{2} = 0$ but $y^{(0)} - \frac{1}{2}z^{(0)} \neq 0$, then $x^{(k)} \approx k(y^{(0)} - \frac{1}{2}z^{(0)}) > 0 \Rightarrow y^{(0)} - \frac{1}{2}z^{(0)} > 0$ If $\frac{z^{(0)}}{2} = 0$, $y^{(0)} - \frac{1}{2}z^{(0)} = 0$, then $x^{(k)} \approx x^{(0)} > 0$

- while (x > 0) { X = X + V;Y = Y + Z;

Long-term Dynamics of Linear Transition Systems

Thus non-termination implies the following:

•
$$\frac{z^{(0)}}{2} > 0$$
, or
• $\frac{z^{(0)}}{2} = 0 \land y^{(0)} - \frac{1}{2}z^{(0)} > 0$, or
• $\frac{z^{(0)}}{2} = 0 \land y^{(0)} - \frac{1}{2}z^{(0)} = 0 \land x^{(0)}$

z < 0 $\vee (z = 0 \land y < 0)$ $\lor (z = 0 \land y = 0 \land x \leq 0)$ while (x > 0) { X = X + V;y = y + z;

The negation of the above condition implies termination! (Tiwari, 2004)

Dominant Term Analysis (DTA) exploits long-time dynamics

- Using Tiwari's analysis to generate terminating conditions requires
 - 1. Finding loop guards expressed in linear terms of program variables (polyhedral guards)
 - 2. Linear loop update as matrix multiplication $\mathbf{x}' = A\mathbf{x}$
 - Exists a linear ordering on the eigenvalues of A

Dominant Term Analysis (DTA) exploits long-time dynamics

- Using Tiwari's analysis to generate terminating conditions requires
 - 1. Finding loop guards expressed in linear terms of program variables (polyhedral guards)
 - 2. Linear loop update as matrix multiplication $\mathbf{x}' = A\mathbf{x}$
 - Exists a linear ordering on the eigenvalues of A

Q: When is this possible? What if we have to compare $e^{\frac{k\pi}{3}i}$ and $e^{\frac{3k\pi}{4}i}$? A: That is hard to do. Want to consider only matrices with real/rational eigenvalues

Tiwari has a way to synthesize conditions for termination, but ...

Tiwari has a way to synthesize conditions for termination, but only applies to *linear transition systems with polyhedral guards and rational spectra*

Termination analysis of the whole program

Define swf() operator that finds terminating preconditions for a transition formula

Reduce using theory of best abstractions in a monotone manner

> Terminating preconditions for linear transition systems with rational eigenvalues based on (Tiwari, 2004)

Compositional Recurrence analysis (Kincaid et al., 2015)

Simulation as abstraction

- Transition system $A = \langle S_A, R_A \rangle$
- Transition system $\widetilde{A} = \langle \widetilde{S}_A, \widetilde{R}_A \rangle$
- $p: S_A \to \widetilde{S_A}$ is a simulation from transition system A to transition system A if for all A -transitions $(a, a') \in R_A$, $(p(a), p(a')) \in R_A$
- Existence of simulation p from A to A has the consequence that termination of Aimplies termination of A
 - If have a terminating condition C for Athen we can get a sufficient terminating condition for A as $p^{-1}(C)$

36

Simulation as abstraction

- Transition system $A = \langle S_A, R_A \rangle$
- Transition system $\widetilde{A} = \langle \widetilde{S_A}, \widetilde{R_A} \rangle$
- $p: S_A \to \widetilde{S_A}$ is a simulation from transition system A to transition system A if for all A -transitions $(a, a') \in R_A$, $(p(a), p(a')) \in R_A$
- Existence of simulation p from A to \overline{A} has the consequence that termination of Aimplies termination of A
 - If have a terminating condition C for Athen we can get a sufficient terminating condition for A as $p^{-1}(C)$

while $(x + y \ge 0)$ { if (__VERIFIER_nondet_int()) { x = x - 1;} else { y = y - 1;

Transition formula of A: $x + y \ge 0 \land ((x' = x - 1 \land y' = y) \lor (y' = y - 1 \land x' = x))$ Simulation $s: \begin{bmatrix} x \\ y \end{bmatrix} \rightarrow x + y$ Transition formula of \widetilde{A} : $t \ge 0 \land t' = t - 1$

Theory of best abstractions

• A is a best abstraction of Awithin class & with respect to a certain class of simulations, e.g., linear simulations

Class \mathscr{C} (over-approximating transition systems)

Best abstraction and monotonicity

- We want to get sufficient terminating conditions for transition system A
- Suppose we have a procedure that computes swf for transition systems in a class \mathscr{C}
 - Using the best abstraction A and simulation $p: A \rightarrow A$, we get sufficient terminating conditions $p^{-1}(swf(A))$
 - Using some other abstraction *B* and simulation $q: A \rightarrow B$, we get sufficient terminating conditions $q^{-1}(swf(B))$
- Under reasonable conditions, using the best abstraction yields the weakest terminating preconditions, compared to using any other abstraction in \mathscr{C}

Best abstraction ! simulation \overline{q} Other abstraction B

Class \mathscr{C} (over-approximating transition systems)

Termination analysis of the whole program

Define swf() operator that finds terminating preconditions for a transition formula

Reduce using theory of best abstractions in a monotone manner

> Terminating preconditions for linear transition systems with rational eigenvalues based on (Tiwari, 2004)

Compositional Recurrence analysis (Kincaid et al., 2015)

Termination analysis of the whole program

Compositional Recurrence analysis (Kincaid et al., 2015)

Example: Transition formula $x' = x \land x' = 0$ has abstractions x' = x, x' = 2x, x' = 3x, etc. but does not have a best abstraction

Theorem: transition formulas in LIA have best abstractions in DATS w.r.t. linear simulations

- DATS: deterministic affine transition system
 - State space \mathbb{Q}^n
 - $(\mathbf{u}, \mathbf{v}) \in R \Leftrightarrow \mathbf{v} = T\mathbf{u} + \mathbf{c} \wedge D\mathbf{u} = d$
- cf. TDATS (total deterministic affine transition system)
 - $(\mathbf{u}, \mathbf{v}) \in R \Leftrightarrow \mathbf{v} = P\mathbf{u} + \mathbf{c}$
- Note: transition formulas in LIA does not necessarily have best abstractions in TDATS w.r.t. linear simulations

Simplifying DATS

- DATS: deterministic affine transition system
 - $(\mathbf{u}, \mathbf{v}) \in R \Leftrightarrow \mathbf{v} = T\mathbf{u} + \mathbf{c} \wedge D\mathbf{u} = d$
- Simplification 1: easy to homogenize this in a DLTS feldeterministic linear transition system)
 - $(\mathbf{u}',\mathbf{v}') \in R \Leftrightarrow \mathbf{v}' = T'\mathbf{u}' \wedge D'\mathbf{u}' = 0$
- study the exponentiated version of T_0 for the termination of DLTS

Define the *domain* of a transition relation as $dom(R) \triangleq \{x \in S : \exists y . xRy\}$

- Define the *invariant domain* of transition relation R as dom^{*}(R) \triangleq \int dom(R^n)
 - Intuition: initial states outside of dom^{*} are certainly terminating pre-states, so only cares about states inside the invariant domain

Simplification 2: construct a representation matrix T_0 that behaves exactly the same as T on the domain we care about and maps everything else to 0, then

Termination analysis of the whole program

Compositional Recurrence analysis (Kincaid et al.)

Termination analysis of the whole program

Compositional Recurrence analysis (Kincaid et al.) $(\mathbf{u}, \mathbf{v}) \in R \Leftrightarrow A\mathbf{v} = B\mathbf{u}$ $(\mathbf{u}, \mathbf{v}) \in R \Leftrightarrow \mathbf{v} = T\mathbf{u} \wedge D\mathbf{u} = 0$ Next: spectral theory of DLTS

Spectral theory of DLTS

- Spectrum of total deterministic transition systems (TDLTS) v = Tu
 - spec(*T*) $\triangleq \{\lambda \in \mathbb{C} : \exists v, v \neq 0.Tv = \lambda v\}$
- Spectrum of deterministic transition systems (DLTS) $v = Tu \wedge Du = 0$
 - spec $(T, D) \triangleq \{\lambda \in \mathbb{C} : \exists v \in \text{dom}^*(T, D), v \neq 0.Tv = \lambda v\}$
- QDLTS: DLTS with rational spectrum
- Theorem: the representation T_0 for a QDLTS $v = Tu \wedge Du = 0$ has rational eigenvalues

Best QDLTS abstraction

- Theorem: any DLTS has a best abstraction as a QDLTS w.r.t. linear simulations
- Proof is constructive and we give an algorithm to compute the best QDLTS abstraction
- Algorithm idea: repeatedly construct DLTS with lower dimensions but remains an over-approximation of the original DLTS, until we obtain a QDLTS or we run out of dimensions

Best QDLTS abstraction restricted to invariant domain is what Tiwari needs

- Properties of a QDLTS:
 - Every iteration is a linear update restricted to a linear space $\mathbf{x}' = T\mathbf{x} \wedge D\mathbf{x} = 0$
 - Spectrum of the above DLTS is all rational

- Another look:
 - Starting from x within the invariant domain, the updates are characterized by $\mathbf{x}' = T_0 \mathbf{x}$
 - Eigenvalues of T_0 are all rational
- initial states outside of the invariant domain are certainly terminating pre-states

Best QDLTS abstraction restricted to invariant domain is what Tiwari needs

- Tiwari needs:
 - Polyhedral guards

Procedure to compute the best polyhedral guards given a transition formula and simulation

Linear updates in the loop body $\mathbf{x}' = A\mathbf{x}$

Update matrix A has rational eigenvalues

- Another look:
 - Starting from x within the invariant domain, the updates are characterized by $\mathbf{x}' = T_0 \mathbf{x}$
 - Eigenvalues of T_0 are all rational
- initial states outside of the invariant domain are certainly terminating pre-states

Termination analysis of the whole program

Compositional Recurrence analysis (Kincaid et al.)

Define swf() operator that finds terminating preconditions for a transition formula

> Terminating preconditions for linear transition systems with rational eigenvalues (Tiwari)

Transition formula F

Best DLTS abstraction G

Best QDLTS abstraction Q

Linear simulation S

Sufficient preconditions for *F* to terminate

Sufficient preconditions for *G* to terminate

Linear simulation *T* Monotone

Monotone

Sufficient preconditions for Q to terminate

How we achieve compositionality and predictability?

- composing the results
 - Extend Tarjan's framework to termination analysis
- <u>program</u>
 - Exploit the compositional framework
 - Reduce termination of programs to termination of single loops (swf_perator)
 - Access to a summary for the body of each loop (atc operator)
 - Utilize decision procedure for linear loops to generate terminating pre-conditions for summaries
 - Abstract transition formulas into linear models that can be handled by Tiwari's method

Compositionality: compute termination conditions for a program by analyzing its components and

Predictability: give a monotone procedure that computes a sufficient terminating precondition for a

Preliminary Experimental Results

- **SV-COMP** termination benchmarks
 - Not geared towards conditional 0 termination
 - Subset containing only terminating programs
- Conclusions
 - Monotonicity and compositionally 0 come at a cost

Future work

- Create more conditional termination benchmarks and evaluate the tool on those benchmarks
- Use termination arguments to enhance loop invariant generation
- Monotone conditional termination analysis for other ranking function templates
- Explore how mathematical theory of dynamical systems could further help with program analysis

References

- [1] B. Cook, A. Podelski, and A. Rybalchenko, "Abstraction Refinement for Termination.," SAS, 2005.
- [2] A. Tiwari, "Termination of Linear Programs.," CAV, 2004.
- POPL, 2009.
- 1981.
- [5] T. W. Reps, S. Sagiv, and G. Yorsh, "Symbolic Implementation of the Best Transformer.," VMCAI, 2004.
- [6] R. Jhala and R. Majumdar, "Software model checking.," ACM Comput. Surv., 2009.
- [7] L. Gonnord, D. Monniaux, and G. Radanne, "Synthesis of Ranking Functions using Extremal Counterexamples," {ACM} SIGPLAN Notices, vol. 50, no. 6, pp. 608–618, Jun. 2015.
- 1995.
- [9] A. Farzan and Z. Kincaid, "Compositional Recurrence Analysis.," FMCAD, 2015.
- [10] K. L. McMillan, "Lazy Abstraction with Interpolants.," CAV, 2006.
- [11] M. Bozga, R. Iosif, and F. Konecný, "Deciding Conditional Termination.," TACAS, 2012.

• [3] C. Calcagno, D. Distefano, P. W. O'Hearn, and H. Yang, "Compositional shape analysis by means of bi-abduction.,"

• [4] R. E. Tarjan, "A Unified Approach to Path Problems," Journal of the ACM (JACM), vol. 28, no. 3, pp. 577–593, Jul.

• [8] T. W. Reps, S. Horwitz, and S. Sagiv, "Precise Interprocedural Dataflow Analysis via Graph Reachability.," POPL,

Thanks for your attention!