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• Program Analysis: how much can we 
understand about the runtime 
behavior of a program from its static 
representation

• A query: a program and a logical 
specification of desired behavior

• “Necessary” Property: Soundness

• Desirable Property: Predictability


• Changes to a program should have 
a predictable impact on its analysis

Background
Introduction
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• Intra-procedural Analysis: Perform 
program analysis in single 
procedures 


• Core Algorithmic Challenge: 
Loop Invariants


• Inter-procedural Analysis: 
Perform program analysis in the 
presence of recursive calls


• Core Algorithmic Challenge: 
Procedure Summarization 

• Summaries + Intra = Inter

Background
Introduction
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x′ = x + 1

Transition Formula: a (LIRA) 
formula over a set of program 
variables  and primed copies 

 describing the pre and post 
state of a transition respectively 

X
X′ 



• mem_ops + buf is incremented by 
one for each recursive call made


• buf must be set to zero at the end 
of any terminating execution


• There are at most  recursive 
calls made

size

Why does the assertion hold?

An Example Analysis Task
What is this task?

• Integer model of a program that 
recurses over a balanced binary 
tree, saving each node’s value in 
an array and writing the array to 
disk whenever a leaf is reached
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How do we analyze programs predictably?
The Best Abstraction Recipe

• A program can be viewed as a transition 
system  where  is the state space 
and  describes transitions

⟨S, → ⟩ S
→ ⊆ S × S

•  is a simulation between 
 and  if for all , if 

 then 

f : S → S′ 

⟨S, → ⟩ ⟨S′ , →′ ⟩ u, u′ ∈ S
u → u′ f(u) →′ f(u′ )

• A simulation implies that an algorithm for 
the reachability of  can be used 
to over-approximate the reachability of  

, as:

⟨S′ , →′ ⟩

⟨S, → ⟩

Transition Systems

Decidable

⟨S, → ⟩

⟨S′ , →′ ⟩

f
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How do we analyze programs predictably?
The Best Abstraction Recipe

• An abstraction of  is another 
transition system  and a 
simulation  to it

⟨S, → ⟩
⟨S′ , →′ ⟩

f

• An abstraction is best if for any other 
abstraction in the same class  
and , there is a simulation  from 

 to 

⟨S†, →† ⟩
f † f*

⟨S′ , →′ ⟩ ⟨S†, →† ⟩

Transition Systems
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⟨S, → ⟩
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f
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How do we analyze programs predictably?
The Best Abstraction Recipe

• An abstraction of  is another 
transition system  and a 
simulation  to it

⟨S, → ⟩
⟨S′ , →′ ⟩

f

• An abstraction is best if for any other 
abstraction in the same class  
and , there is a simulation  from 

 to 

⟨S†, →† ⟩
f † f*

⟨S′ , →′ ⟩ ⟨S†, →† ⟩

• Best abstractions lead to monotone 
over-approximations: if there is a 
simulation  from  to , 
there will be a simulation between their 
best abstractions

f̃ ⟨S, → ⟩ ⟨S̄, →̄ ⟩

Transition Systems

Decidable

 Class

⟨S, → ⟩

⟨S′ , →′ ⟩

f

⟨S†, →† ⟩

f*
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f̄

⟨S̄, →̄ ⟩f̃



How do we analyze programs predictably?
The Best Abstraction Recipe

• Ensure “predictability” through Monotonicity: a more specific 
program always results in a more specific summary

Input Program Best Abstraction Exact Summary 

of Abstraction

ℱ

Approximate 
Summary


to Intra-procedural 
Analysis

f
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Model of Input Program
• A program graph is a directed graph 

in which nodes represent control 
locations


• Every edge carries a label from:


• a set of standard edges 


• a set of procedures 


• A program graph is additionally 
equipped with two functions 

 and  which 
map procedures to their entry and 
exit vertices respectively

Σ

P

in : P → V out : P → V
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Model of Input Program
• A trajectory through a procedure  in a 

program graph is a sequence in  
corresponding to a sequence of edges in 

 forming a path from  to 
 in which every element  has 

been replaced with a trajectory through 


• Programs are understood as a program 
graph and a transition formula mapping 

 representing the state 
transformation


• The semantic meaning of a trajectory can 
be computed by composing the transition 
formulas of each edge in order. 

p
Σ*

(Σ ∪ P)* in(p)
out(p) p′ ∈ P

p′ 

tf : Σ → TF(X)
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• An example trajectory: abb

Example Execution
Model of Input Program

=
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Vector Addition System with Resets
• Vector Addition Systems [Karp, Miller 1969] are classically 

used to model parallel computing/distributed systems


• Rational Vector Addition Systems with Resets (VASR) 
transformations are the restricted subclass of transition 
formulas which can be written as:


 where  , , and  is elementwise product


Ex: 


• We consider VASRs over rational numbers instead of over 
naturals as the reachability of the latter is Ackermann-
complete [Czerwiński 2021]

⃗r ∈ {0,1}|X| ⃗a ∈ ℚ|X| *

11

⃗X′ = ⃗r * ⃗X + ⃗a



Vector Addition System with Resets

• A VASR  is a transition formula mapping where each formula 
is a VASR transformation


• Letting  denote valuations over ,  simulates  according 
to  if…

𝕍

ρ X 𝕍 tf
f
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Vector Addition System with Resets

• A VASR  is a transition formula mapping where each formula 
is a VASR transformation


• Letting  denote valuations over ,  simulates  according 
to  if…

𝕍

ρ X 𝕍 tf
f

12

 tf  𝕍

[ρ, ρ′ ] ⊧ tf(s) [ f(ρ), f(ρ′ )] ⊧ 𝕍(s)



Vector Addition System with Resets
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Vector Addition System with Resets

13

If  holds iff  transitions to  along some trajectory  in the 
language of our program graph according to , 

ℱ y y′ w
𝕍

Then  holds if  can transition to  along 
some trajectory  according to 

ℱ[y → f(x), y′ → f(x′ )] x x′ 

w tf

So  can be used as an over-approximate 
summary

ℱ[y → f(x), y′ → f(x′ )]

• We restrict our attention to linear simulations

 tf  𝕍

x x′ f(x) f(x′ )



Example VASR Abstraction
Vector Addition System with Resets

Input Program
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• An example trajectory: abb


•

Example Abstract Execution
Vector Addition System with Resets

=
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Overview
Any questions?
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Which step are we covering?
Overview
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Q: Given a transition formula 
mapping, how do we compute 
the best VASR that simulates 

it?


A: Divide and Conquer! Find 
best abstractions of individual 

transition formulas and 
combine them to find a best 
abstraction of the system.
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• Consider the problem of abstracting a 
single transition formula tf(s)

Abstracting tf(s)
Best VASR Abstractions of tf

• These are linear spaces; using tools 
from the literature [Reps, Sagiv, Yorsh 
2004], we can generate bases

• These bases form best abstractions

X′ = * X +

19
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The Combination Step
Best VASR Abstractions of tf
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• For  to be a simulation between VASRs, each dimension of the 
output must only be dependent on either reset or incremented 
dimensions of the input


• The state space of a VASR is well represented by a separated 
space, a linear space  along with a canonical decomposition as 
a direct sum 


• The combination step can cause a potentially exponential 
blowup in the state space of the resulting VASR to ensure best 
abstraction

g

S
S = ⊕ H

Insights from the Combination Step
Best VASR Abstractions of tf

22



• Extracts a set of VASR transformations simulating a single 
transition formula representing the body of a loop


• Uses reachability relation of the resulting VASR as an over-
approximate summary for the loop


• Limitation: Extraction process relies on the convexity of the 
underlying theory. While it extracts best abstractions for Linear 
Rational Arithmetic, does not extract best abstractions for 
Linear Integer/Rational Arithmetic.


• Gap Filled: Our work is able to compute best VASR 
abstractions for LIRA transition formula systems 

Related Work: Silverman & Kincaid 2019
Best VASR Abstractions of tf

23
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• Computes best per-formula 
VASR via SMT sampling


• Leverages pushout of the 
category of VASR state 

spaces to combine multiple 
VASRs in the most general 

way possible

Any Questions?
Overview
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Which step are we covering?
Overview

How do we compute a transition formula 
 summarizing executions of a VASR on 

paths through a program graph?
ℱ
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• Context Free Grammar: 


• Formalism for describing 
a set of strings over 
some alphabet


• Production Rules: 
consume one 
nonterminal and produce 
any string of terminals 
and nonterminals


• The set of all trajectories 
through a program graph is 
context free

What do we need to know?
Background

 

 

X → aY → abX → abc

X → aY → abX → abaY → ababX → ababac

X → aY → abX → … → (ab)nc

 
 

 
start: 

Σ = {a, b, c}
N = {X, Y}

P = {X → aY, Y → bX, X → c}
X

Gram
mar Alphabet

Nonterminals
Production  Rules

Example Derivations

26



• The Parikh image of a word  in  is a function  
mapping each character to its number of occurrences in 


• The Parikh image of a language is the set of Parikh images of all 
words in the language


• [Verma, Seidl, Schwentick 2005] Given a grammar , we can 
compute in linear time a logical formula  which holds iff  
is the Parikh image of some word in the language of 

w Σ* π : Σ → ℕ
w

G
𝒫G(π) π

G

What do we need to know?
Background

27



• Without resets, the Parikh image is sufficient to compute the 
composition of VASR transformations because they commute

Analyzing the Single Dimension Case
VASR CFL-Reachability

Σ = {a, b}

X′ = 1 * X + 1

X′ = 1 * X + 2

a

b

          

          

          

aaaba

ababa

aaa

Trajectories Transforms
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• Without resets, the Parikh image is sufficient to compute the 
composition of VASR transformations because they commute


• Intuition for resets: it is sufficient to identify the final reset in a 
word and the Parikh image of the sub-word after because all 
remaining operations commute
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• Without resets, the Parikh image is sufficient to compute the 
composition of VASR transformations because they commute


• Intuition for resets: it is sufficient to identify the final reset in a 
word and the Parikh image of the sub-word after because all 
remaining operations commute

Analyzing the Single Dimension Case
VASR CFL-Reachability

Σ = {a, b}

X′ = 1 * X + 1

X′ = 0 * X + 2

a

b

          

          

          

aaaba

ababa
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X′ = 3

X′ = 3

X′ = X + 3

Trajectories Transforms
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Formalizing “Final Resets”
VASR CFL-Reachability

30



• Let  be the dimension of our VASR . To compute the transformation associated with a 
trajectory  we need:


1. The locations of the final resets of each dimension


2. The Parikh Images of the subwords between these final resets

d 𝕍
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• Abstract Trajectory : a formalization of the necessary 
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• Let  be the dimension of our VASR . To compute the transformation associated with a 
trajectory  we need:


1. The locations of the final resets of each dimension


2. The Parikh Images of the subwords between these final resets

d 𝕍
w

• Abstract Trajectory : a formalization of the necessary 
information of a trajectory to compute its transition


• For any even ,          (High level: even symbols identify the final resets)

π : (Σ × [2d + 1]) → ℕ

i ∑
s∈Σ

π(s, i) ≤ 1

• An abstract trajectory is well-formed according to  if the final reset of each dimension 
from left to right is at an even symbol

𝕍

• An abstract trajectory  represents a trajectory  if there is some decomposition 
 such that the character count of symbol  in  is 

π w
w = w1…w2d+1 s wi π(s, i)

Formalizing “Final Resets”
VASR CFL-Reachability
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• Let’s look at some examples! ,  resetsw = aabba b

Formalizing “Final Resets”
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Can we compute abstract trajectories of a CFL?
VASR CFL-Reachability
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• Consider the regular language: 
 
 
 
where  for all Σi = ⟨i, s⟩ s ∈ Σ

• If  is the homomorphism sending characters in  to their 
corresponding character in , then the Parikh Image of the 
language.                    asf  is the set of all abstract trajectories of 
trajectories in the language of 

h Σi
Σ

G

• Since context-free languages are closed under intersection with 
regular languages and inverse homomorphism, this language is 
context-free

• Let  be a grammar generating this languageI(G)

Can we compute abstract trajectories of a CFL?
VASR CFL-Reachability
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VASR CFL-Reachability
What is our logical summary?

 holds iff  steps to  along some program path! ℱ(y, y′ ) y y′ 

ℱ(y, y′ ) := ∃π . 𝒫I(G)(π) ∧ ℱwf(π) ∧ 𝒯V(π)

 is the abstract 
trajectory of a 

trajectory in 

π

ℒ(G)

𝒫I(G)(π)

encodes transform 
associated with  on 

 and 
π

y y′ 

𝒯V(π)

Even symbols mark 
final resets 

ℱwf(π)

33



VASR CFL-Reachability
Related Work: Haase and Halfon 2014
• Identified the generalized Parikh image, similar to our abstract 

trajectories, to be sufficient to compute the VASR transformation 
associated with a word


• Showed that the reachability relation of a VASR along  and 
regular languages is computable 


• [Chistikov 2015] showed that the reachability relation of a VASR 
along communication-free Petri-net languages is computable


• Gap Filled: Our work shows that the reachability relation of a 
VASR along context-free languages is computable

Σ*
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Input Program Best Abstraction Exact Summary 

of Abstraction

ℱ[y → f(X)]

4

5

1

2

3

save_tree

save_tree

4

5

1

2

3

save_tree

save_tree

f

What is our logical summary?
Context-Free VASR Reachability

We have a monotone inter-procedural analyzer!
35

Approximate 
Summary


for Intra-procedural 
Analysis



What can we use this to analyze?
Evaluation

Tree Counting Example 

36



What can’t we use this to analyze?
Evaluation

Quicksort Example Identity Example
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Q: How can we refine the language 
considered by our summary?
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Q: How can we refine the language 
considered by our summary?
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Q: How can we refine the language 
considered by our summary?

A: Our summary has variables 
representing the number of times 

each edge appears in an execution 
- we can synthesize bounds on 
recursive depth and use them to 

constrain these symbols.
38



• Related to the potential method 
[Tarjan 1985] used in amortized 
complexity analysis 


• Goal is to find a function 
  where 

 is a resource bound on 
the number of times procedure 

 can be called in any 
execution of procedure  
starting in state 


• Potential for example: 
 

νq : (P × S) → ℤ
νq(p, ρ)

q
p

ρ

νsave_tree(save_tree, ρ)
= max(0, ρ(size))

Introduction
Inductive Linear Bounds
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• A sufficient condition for 
being a potential function 
is inductiveness: the 
potential of any state is  
the resource cost and the 
sub-potentials of any child 
calls in any execution 
beginning from that state

≥

Inductiveness
Inductive Linear Bounds

40



• A sufficient condition for 
being a potential function 
is inductiveness: the 
potential of any state is  
the resource cost and the 
sub-potentials of any child 
calls in any execution 
beginning from that state

≥

Inductiveness
Inductive Linear Bounds

40



• Search for potential functions of the template 


• Use a black-box intra-procedural analysis over a transformed 
program to form a constraint system encoding inductiveness for a 
symbolic  vector of coefficients 


• Leverage polyhedral techniques to solve constraint system


• Construct finite formula which holds iff a variable (Parikh variable 
representing the number of function calls) is less than a (potentially 
infinite) set of potential functions


• Bound extraction and application is monotone (assuming helper 
intra-procedural analysis routine is monotone)

ν(X) = max(0, ⃗aT ⃗X )

⃗a

Method Overview
Inductive Linear Bounds
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• Automatically derives linear resource bounds by generating a 
constraint system via a set of Hoare-logic style inference rules 
and solving the resulting system with a Linear Programming 
solver


• Limitation: The Hoare-style inference rules, while sound, do not 
ensure monotonicity of the resulting constraint system. In 
particular, the inference rules use a heuristic weakening rule. This 
can lead to unpredictable effects on the resource bound 
computed for related programs


• Gap Filled: By using a monotone intraprocedural analysis 
routine, our work is able to synthesize linear bounds matching a 
similar template in a monotone way

Related Work: Carbonneaux, Hoffman, Shao 2015
Inductive Linear Bounds
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What can we use this to analyze?
Evaluation

Quicksort Example Identity Example
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Evaluation
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• Best Labeled VASR Abstractions of LIRA transition formula 
mappings


• VASR Reachability along context free languages


• Inductive Linear Bounds which are synthesized and applied 
in a monotone way


• An implementation of the end-to-end summarization routine 
that is comparable to the state of the art on standard 
benchmarks and outperforms the SOTA in some domains

What did we achieve?
Conclusion
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• Extending the VASR Model: How can we modify the VASR 
model to better capture program behavior?


• Develop Abstract Trajectory Analysis: What are the algebraic 
qualities of VASRs that allow us to compute its reachability 
using abstract trajectories? Are there other useful classes of 
transition systems which meet these conditions?


• CHC Solving: How can we apply similar techniques to those 
found in this work to solve nonlinear Constrained Horn Clause 
problems?

What’s next?
Future Work
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