
Nikhil Pimpalkhare

Procedure Summarization
via Vector Addition Systems
and Inductive Linear Bounds
General Exam

October 2023
1

Background
Introduction

2

• Program Analysis: how much can we
understand about the runtime
behavior of a program from its static
representation

Background
Introduction

2

• Program Analysis: how much can we
understand about the runtime
behavior of a program from its static
representation

• A query: a program and a logical
specification of desired behavior

Background
Introduction

2

Program
Analyzer

Program Spec

?

Program

• Program Analysis: how much can we
understand about the runtime
behavior of a program from its static
representation

• A query: a program and a logical
specification of desired behavior

• “Necessary” Property: Soundness

Background
Introduction

2

Program
Analyzer

Program Spec

?

Program

• Program Analysis: how much can we
understand about the runtime
behavior of a program from its static
representation

• A query: a program and a logical
specification of desired behavior

• “Necessary” Property: Soundness

• Desirable Property: Predictability

• Changes to a program should have
a predictable impact on its analysis

Background
Introduction

2

Program
Analyzer

Program Spec

?

Program

• Intra-procedural Analysis: Perform
program analysis in single
procedures

• Core Algorithmic Challenge:
Loop Invariants

• Inter-procedural Analysis:
Perform program analysis in the
presence of recursive calls

• Core Algorithmic Challenge:
Procedure Summarization

• Summaries + Intra = Inter

Background
Introduction

3

x′ = x + 1

Transition Formula: a (LIRA)
formula over a set of program
variables and primed copies

 describing the pre and post
state of a transition respectively

X
X′

• mem_ops + buf is incremented by
one for each recursive call made

• buf must be set to zero at the end
of any terminating execution

• There are at most recursive
calls made

size

Why does the assertion hold?

An Example Analysis Task
What is this task?

• Integer model of a program that
recurses over a balanced binary
tree, saving each node’s value in
an array and writing the array to
disk whenever a leaf is reached

4

How do we analyze programs predictably?
The Best Abstraction Recipe

5

How do we analyze programs predictably?
The Best Abstraction Recipe

• A program can be viewed as a transition
system where is the state space
and describes transitions

⟨S, → ⟩ S
→ ⊆ S × S

Transition Systems

Decidable

⟨S, → ⟩

⟨S′ , →′ ⟩

5

How do we analyze programs predictably?
The Best Abstraction Recipe

• A program can be viewed as a transition
system where is the state space
and describes transitions

⟨S, → ⟩ S
→ ⊆ S × S

• is a simulation between
 and if for all , if

 then

f : S → S′

⟨S, → ⟩ ⟨S′ , →′ ⟩ u, u′ ∈ S
u → u′ f(u) →′ f(u′)

Transition Systems

Decidable

⟨S, → ⟩

⟨S′ , →′ ⟩

f

5

How do we analyze programs predictably?
The Best Abstraction Recipe

• A program can be viewed as a transition
system where is the state space
and describes transitions

⟨S, → ⟩ S
→ ⊆ S × S

• is a simulation between
 and if for all , if

 then

f : S → S′

⟨S, → ⟩ ⟨S′ , →′ ⟩ u, u′ ∈ S
u → u′ f(u) →′ f(u′)

• A simulation implies that an algorithm for
the reachability of can be used
to over-approximate the reachability of

, as:

⟨S′ , →′ ⟩

⟨S, → ⟩

Transition Systems

Decidable

⟨S, → ⟩

⟨S′ , →′ ⟩

f

5

{u, u′ : u → u′ } ⊆ {u, u′ : f(u) →′ f(u′)}

How do we analyze programs predictably?
The Best Abstraction Recipe

• An abstraction of is another
transition system and a
simulation to it

⟨S, → ⟩
⟨S′ , →′ ⟩

f

• An abstraction is best if for any other
abstraction in the same class
and , there is a simulation from

 to

⟨S†, →† ⟩
f † f*

⟨S′ , →′ ⟩ ⟨S†, →† ⟩

Transition Systems

Decidable

 Class

⟨S, → ⟩

⟨S′ , →′ ⟩

f

⟨S†, →† ⟩

f*

6

f †

How do we analyze programs predictably?
The Best Abstraction Recipe

• An abstraction of is another
transition system and a
simulation to it

⟨S, → ⟩
⟨S′ , →′ ⟩

f

• An abstraction is best if for any other
abstraction in the same class
and , there is a simulation from

 to

⟨S†, →† ⟩
f † f*

⟨S′ , →′ ⟩ ⟨S†, →† ⟩

• Best abstractions lead to monotone
over-approximations: if there is a
simulation from to ,
there will be a simulation between their
best abstractions

f̃ ⟨S, → ⟩ ⟨S̄, →̄ ⟩

Transition Systems

Decidable

 Class

⟨S, → ⟩

⟨S′ , →′ ⟩

f

⟨S†, →† ⟩

f*

6

f̄

⟨S̄, →̄ ⟩f̃

How do we analyze programs predictably?
The Best Abstraction Recipe

• Ensure “predictability” through Monotonicity: a more specific
program always results in a more specific summary

Input Program Best Abstraction Exact Summary

of Abstraction

ℱ

Approximate
Summary

to Intra-procedural
Analysis

f

7

4

5

1

2

save_tr
ee

save_tr
ee

4

5

1

2

save_tr
ee

save_tr
ee

How do we analyze programs predictably?
The Best Abstraction Recipe

• Ensure “predictability” through Monotonicity: a more specific
program always results in a more specific summary

Input Program Best Abstraction Exact Summary

of Abstraction

ℱ

Approximate
Summary

to Intra-procedural
Analysis

f

7

4

5

1

2

save_tr
ee

save_tr
ee

4

5

1

2

save_tr
ee

save_tr
ee

Program
Model:

Transition
Formula

Mapping over
context-free

language

How do we analyze programs predictably?
The Best Abstraction Recipe

• Ensure “predictability” through Monotonicity: a more specific
program always results in a more specific summary

Input Program Best Abstraction Exact Summary

of Abstraction

ℱ

Approximate
Summary

to Intra-procedural
Analysis

f

7

4

5

1

2

save_tr
ee

save_tr
ee

4

5

1

2

save_tr
ee

save_tr
ee

Program
Model:

Transition
Formula

Mapping over
context-free

language

Abstract
Model:

Rational
Vector

Addition
Systems with
Resets over
context-free

language

Model of Input Program
• A program graph is a directed graph

in which nodes represent control
locations

• Every edge carries a label from:

• a set of standard edges

• a set of procedures

• A program graph is additionally
equipped with two functions

 and which
map procedures to their entry and
exit vertices respectively

Σ

P

in : P → V out : P → V

8

4

5

1

2

save_tree

save_tree

b

a

Model of Input Program
• A trajectory through a procedure in a

program graph is a sequence in
corresponding to a sequence of edges in

 forming a path from to
 in which every element has

been replaced with a trajectory through

• Programs are understood as a program
graph and a transition formula mapping

 representing the state
transformation

• The semantic meaning of a trajectory can
be computed by composing the transition
formulas of each edge in order.

p
Σ*

(Σ ∪ P)* in(p)
out(p) p′ ∈ P

p′

tf : Σ → TF(X)

9

4

5

1

2

save_tree

save_tree

b

a

• An example trajectory: abb

Example Execution
Model of Input Program

=

10

4

5

1

2

save_tree

save_tree

a

b

Vector Addition System with Resets
• Vector Addition Systems [Karp, Miller 1969] are classically

used to model parallel computing/distributed systems

• Rational Vector Addition Systems with Resets (VASR)
transformations are the restricted subclass of transition
formulas which can be written as:

 where , , and is elementwise product

Ex:

• We consider VASRs over rational numbers instead of over
naturals as the reachability of the latter is Ackermann-
complete [Czerwiński 2021]

⃗r ∈ {0,1}|X| ⃗a ∈ ℚ|X| *

11

⃗X′ = ⃗r * ⃗X + ⃗a

Vector Addition System with Resets

• A VASR is a transition formula mapping where each formula
is a VASR transformation

• Letting denote valuations over , simulates according
to if…

𝕍

ρ X 𝕍 tf
f

12

 tf 𝕍

Vector Addition System with Resets

• A VASR is a transition formula mapping where each formula
is a VASR transformation

• Letting denote valuations over , simulates according
to if…

𝕍

ρ X 𝕍 tf
f

12

 tf 𝕍

[ρ, ρ′] ⊧ tf(s)

Vector Addition System with Resets

• A VASR is a transition formula mapping where each formula
is a VASR transformation

• Letting denote valuations over , simulates according
to if…

𝕍

ρ X 𝕍 tf
f

12

 tf 𝕍

[ρ, ρ′] ⊧ tf(s) [f(ρ), f(ρ′)] ⊧ 𝕍(s)

Vector Addition System with Resets

13

Vector Addition System with Resets

13

If holds iff transitions to along some trajectory in the
language of our program graph according to ,

ℱ y y′ w
𝕍

Vector Addition System with Resets

13

If holds iff transitions to along some trajectory in the
language of our program graph according to ,

ℱ y y′ w
𝕍

Then holds if can transition to along
some trajectory according to

ℱ[y → f(x), y′ → f(x′)] x x′

w tf

Vector Addition System with Resets

13

If holds iff transitions to along some trajectory in the
language of our program graph according to ,

ℱ y y′ w
𝕍

Then holds if can transition to along
some trajectory according to

ℱ[y → f(x), y′ → f(x′)] x x′

w tf
 tf 𝕍

x x′ f(x) f(x′)

Vector Addition System with Resets

13

If holds iff transitions to along some trajectory in the
language of our program graph according to ,

ℱ y y′ w
𝕍

Then holds if can transition to along
some trajectory according to

ℱ[y → f(x), y′ → f(x′)] x x′

w tf

So can be used as an over-approximate
summary

ℱ[y → f(x), y′ → f(x′)]

 tf 𝕍

x x′ f(x) f(x′)

Vector Addition System with Resets

13

If holds iff transitions to along some trajectory in the
language of our program graph according to ,

ℱ y y′ w
𝕍

Then holds if can transition to along
some trajectory according to

ℱ[y → f(x), y′ → f(x′)] x x′

w tf

So can be used as an over-approximate
summary

ℱ[y → f(x), y′ → f(x′)]

• We restrict our attention to linear simulations

 tf 𝕍

x x′ f(x) f(x′)

Example VASR Abstraction
Vector Addition System with Resets

Input Program

f

14

4

5

1

2

save_tree

save_tree

VASR Abstraction

4

5

1

2

save_tree

save_tree

Example VASR Abstraction
Vector Addition System with Resets

Input Program

15

4

5

1

2

save_tree

save_tree

VASR Abstraction

4

5

1

2

save_tree

save_tree

 =f

⊧

⊧

• An example trajectory: abb

•

Example Abstract Execution
Vector Addition System with Resets

=

16

4

5

1

2

save_tree

save_tree

over-approximate summary!

f

Overview
Any questions?

17

Input Program Best Abstraction Exact Summary

of Abstraction

ℱ[y → f(X)]

Approximate
Summary

for Intra-procedural
Analysis

f4

5

1

2

save_tr
ee

save_tr
ee

4

5

1

2

save_tr
ee

save_tr
ee

Which step are we covering?
Overview

18

Input Program Best Abstraction Exact Summary

of Abstraction

ℱ

Approximate
Summary

for Intra-procedural
Analysis

f
f −1

4

5

1

2

save_tr
ee

save_tr
ee

4

5

1

2

save_tr
ee

save_tr
ee

Q: Given a transition formula
mapping, how do we compute
the best VASR that simulates

it?

A: Divide and Conquer! Find
best abstractions of individual

transition formulas and
combine them to find a best
abstraction of the system.

Abstracting tf(s)
Best VASR Abstractions of tf

19

Abstracting tf(s)
Best VASR Abstractions of tf

19

Examples
tf(b)

tf(c)

• Consider the problem of abstracting a
single transition formula tf(s)

Abstracting tf(s)
Best VASR Abstractions of tf

19

Examples
tf(b)

tf(c)

• Consider the problem of abstracting a
single transition formula tf(s)

Abstracting tf(s)
Best VASR Abstractions of tf

• These are linear spaces; using tools
from the literature [Reps, Sagiv, Yorsh
2004], we can generate bases

19

Examples
tf(b)

tf(c)

• Consider the problem of abstracting a
single transition formula tf(s)

Abstracting tf(s)
Best VASR Abstractions of tf

• These are linear spaces; using tools
from the literature [Reps, Sagiv, Yorsh
2004], we can generate bases

• These bases form best abstractions

X′ = * X +

19

Examples
tf(b)

tf(c)

The Combination Step
Best VASR Abstractions of tf

tf(b)

tf(c)

fb

fc

𝕍(b)

𝕍(c)

f

f

• If is a VASR abstraction of …𝕍 tf

20

The Combination Step
Best VASR Abstractions of tf

tf(b)

tf(c)

fb

fc

𝕍(b)

𝕍(c)

f

f

gb

gc

• If is a VASR abstraction of …𝕍 tf

20

The Combination Step
Best VASR Abstractions of tf

tf(b)

tf(c)

fb

fc

If is the best VASR abstraction of …𝕍 tf

𝕍(b)

𝕍(c)

f

f

gb

gc

𝕍′ (b)

𝕍′ (c)

f′

f′

21

The Combination Step
Best VASR Abstractions of tf

tf(b)

tf(c)

fb

fc

If is the best VASR abstraction of …𝕍 tf

𝕍(b)

𝕍(c)

f

f

gb

gc

𝕍′ (b)

𝕍′ (c)

f′

f′

g′ c

g′ b

21

The Combination Step
Best VASR Abstractions of tf

tf(b)

tf(c)

fb

fc

If is the best VASR abstraction of …𝕍 tf

𝕍(b)

𝕍(c)

f

f

gb

gc

𝕍′ (b)

𝕍′ (c)

f′

f′

g′ c

g′ b

u

u

21

• For to be a simulation between VASRs, each dimension of the
output must only be dependent on either reset or incremented
dimensions of the input

• The state space of a VASR is well represented by a separated
space, a linear space along with a canonical decomposition as
a direct sum

• The combination step can cause a potentially exponential
blowup in the state space of the resulting VASR to ensure best
abstraction

g

S
S = ⊕ H

Insights from the Combination Step
Best VASR Abstractions of tf

22

• Extracts a set of VASR transformations simulating a single
transition formula representing the body of a loop

• Uses reachability relation of the resulting VASR as an over-
approximate summary for the loop

• Limitation: Extraction process relies on the convexity of the
underlying theory. While it extracts best abstractions for Linear
Rational Arithmetic, does not extract best abstractions for
Linear Integer/Rational Arithmetic.

• Gap Filled: Our work is able to compute best VASR
abstractions for LIRA transition formula systems

Related Work: Silverman & Kincaid 2019
Best VASR Abstractions of tf

23

Input Program Best Abstraction Exact Summary

of Abstraction

ℱ

Approximate Summary

for Intra-procedural Analysis

4

5

1

2

3

save_tree

save_tree

4

5

1

2

3

save_tree

save_tree

f
f −1

• Computes best per-formula
VASR via SMT sampling

• Leverages pushout of the
category of VASR state

spaces to combine multiple
VASRs in the most general

way possible

Any Questions?
Overview

24

Input Program Best Abstraction Exact Summary

of Abstraction

ℱ

Approximate Summary

for Intra-procedural Analysis

4

5

1

2

3

save_tree

save_tree

4

5

1

2

3

save_tree

save_tree

f
f −1

Which step are we covering?
Overview

How do we compute a transition formula
 summarizing executions of a VASR on

paths through a program graph?
ℱ

25

• Context Free Grammar:

• Formalism for describing
a set of strings over
some alphabet

• Production Rules:
consume one
nonterminal and produce
any string of terminals
and nonterminals

• The set of all trajectories
through a program graph is
context free

What do we need to know?
Background

X → aY → abX → abc

X → aY → abX → abaY → ababX → ababac

X → aY → abX → … → (ab)nc

start:

Σ = {a, b, c}
N = {X, Y}

P = {X → aY, Y → bX, X → c}
X

Gram
mar Alphabet

Nonterminals
Production Rules

Example Derivations

26

• The Parikh image of a word in is a function
mapping each character to its number of occurrences in

• The Parikh image of a language is the set of Parikh images of all
words in the language

• [Verma, Seidl, Schwentick 2005] Given a grammar , we can
compute in linear time a logical formula which holds iff
is the Parikh image of some word in the language of

w Σ* π : Σ → ℕ
w

G
𝒫G(π) π

G

What do we need to know?
Background

27

• Without resets, the Parikh image is sufficient to compute the
composition of VASR transformations because they commute

Analyzing the Single Dimension Case
VASR CFL-Reachability

Σ = {a, b}

X′ = 1 * X + 1

X′ = 1 * X + 2

a

b

aaaba

ababa

aaa

Trajectories Transforms

28

• Without resets, the Parikh image is sufficient to compute the
composition of VASR transformations because they commute

Analyzing the Single Dimension Case
VASR CFL-Reachability

Σ = {a, b}

X′ = 1 * X + 1

X′ = 1 * X + 2

a

b

aaaba

ababa

aaa

Trajectories Transforms

28

4 a, 1 b

3 a, 2 b

3 a

• Without resets, the Parikh image is sufficient to compute the
composition of VASR transformations because they commute

Analyzing the Single Dimension Case
VASR CFL-Reachability

Σ = {a, b}

X′ = 1 * X + 1

X′ = 1 * X + 2

a

b

aaaba

ababa

aaa

X′ = X + 6

X′ = X + 7

X′ = X + 3

Trajectories Transforms

28

4 a, 1 b

3 a, 2 b

3 a

• Without resets, the Parikh image is sufficient to compute the
composition of VASR transformations because they commute

• Intuition for resets: it is sufficient to identify the final reset in a
word and the Parikh image of the sub-word after because all
remaining operations commute

Analyzing the Single Dimension Case
VASR CFL-Reachability

Σ = {a, b}

X′ = 1 * X + 1

X′ = 0 * X + 2

a

b

aaaba

ababa

aaa

Trajectories Transforms

29

• Without resets, the Parikh image is sufficient to compute the
composition of VASR transformations because they commute

• Intuition for resets: it is sufficient to identify the final reset in a
word and the Parikh image of the sub-word after because all
remaining operations commute

Analyzing the Single Dimension Case
VASR CFL-Reachability

Σ = {a, b}

X′ = 1 * X + 1

X′ = 0 * X + 2

a

b

aaaba

ababa

aaa

Trajectories Transforms

29

• Without resets, the Parikh image is sufficient to compute the
composition of VASR transformations because they commute

• Intuition for resets: it is sufficient to identify the final reset in a
word and the Parikh image of the sub-word after because all
remaining operations commute

Analyzing the Single Dimension Case
VASR CFL-Reachability

Σ = {a, b}

X′ = 1 * X + 1

X′ = 0 * X + 2

a

b

aaaba

ababa

aaa

Trajectories Transforms

1 a after reset

1 a after reset

3 a, no reset

29

• Without resets, the Parikh image is sufficient to compute the
composition of VASR transformations because they commute

• Intuition for resets: it is sufficient to identify the final reset in a
word and the Parikh image of the sub-word after because all
remaining operations commute

Analyzing the Single Dimension Case
VASR CFL-Reachability

Σ = {a, b}

X′ = 1 * X + 1

X′ = 0 * X + 2

a

b

aaaba

ababa

aaa

X′ = 3

X′ = 3

X′ = X + 3

Trajectories Transforms

1 a after reset

1 a after reset

3 a, no reset

29

Formalizing “Final Resets”
VASR CFL-Reachability

30

• Let be the dimension of our VASR . To compute the transformation associated with a
trajectory we need:

1. The locations of the final resets of each dimension

2. The Parikh Images of the subwords between these final resets

d 𝕍
w

Formalizing “Final Resets”
VASR CFL-Reachability

30

• Let be the dimension of our VASR . To compute the transformation associated with a
trajectory we need:

1. The locations of the final resets of each dimension

2. The Parikh Images of the subwords between these final resets

d 𝕍
w

• Abstract Trajectory : a formalization of the necessary
information of a trajectory to compute its transition

• For any even , (High level: even symbols identify the final resets)

π : (Σ × [2d + 1]) → ℕ

i ∑
s∈Σ

π(s, i) ≤ 1

Formalizing “Final Resets”
VASR CFL-Reachability

30

• Let be the dimension of our VASR . To compute the transformation associated with a
trajectory we need:

1. The locations of the final resets of each dimension

2. The Parikh Images of the subwords between these final resets

d 𝕍
w

• Abstract Trajectory : a formalization of the necessary
information of a trajectory to compute its transition

• For any even , (High level: even symbols identify the final resets)

π : (Σ × [2d + 1]) → ℕ

i ∑
s∈Σ

π(s, i) ≤ 1

• An abstract trajectory is well-formed according to if the final reset of each dimension
from left to right is at an even symbol

𝕍

Formalizing “Final Resets”
VASR CFL-Reachability

30

• Let be the dimension of our VASR . To compute the transformation associated with a
trajectory we need:

1. The locations of the final resets of each dimension

2. The Parikh Images of the subwords between these final resets

d 𝕍
w

• Abstract Trajectory : a formalization of the necessary
information of a trajectory to compute its transition

• For any even , (High level: even symbols identify the final resets)

π : (Σ × [2d + 1]) → ℕ

i ∑
s∈Σ

π(s, i) ≤ 1

• An abstract trajectory is well-formed according to if the final reset of each dimension
from left to right is at an even symbol

𝕍

• An abstract trajectory represents a trajectory if there is some decomposition
 such that the character count of symbol in is

π w
w = w1…w2d+1 s wi π(s, i)

Formalizing “Final Resets”
VASR CFL-Reachability

30

• Let’s look at some examples! , resetsw = aabba b

Formalizing “Final Resets”
VASR CFL-Reachability

31

Abstract Trajectories that Represent w

a1a1b2b3a3

Not Abstract
Trajectories

a1a2b3b3a3

a1a1b1b2a3

a3a3b3b3a3

a1a1b2b2a3

a1a2b3b2a2

a1a1b3b3a3

• Let’s look at some examples! , resetsw = aabba b

Formalizing “Final Resets”
VASR CFL-Reachability

31

Abstract Trajectories that Represent w

a1a1b2b3a3

Not Abstract
Trajectories

a1a2b3b3a3

well-formed
a1a1b1b2a3

a3a3b3b3a3

a1a1b2b2a3

a1a2b3b2a2

a1a1b3b3a3

Can we compute abstract trajectories of a CFL?
VASR CFL-Reachability

32

• Consider the regular language: 
 
 
 
where for all Σi = ⟨i, s⟩ s ∈ Σ

Can we compute abstract trajectories of a CFL?
VASR CFL-Reachability

32

• Consider the regular language: 
 
 
 
where for all Σi = ⟨i, s⟩ s ∈ Σ

• If is the homomorphism sending characters in to their
corresponding character in , then the Parikh Image of the
language. asf is the set of all abstract trajectories of
trajectories in the language of

h Σi
Σ

G

Can we compute abstract trajectories of a CFL?
VASR CFL-Reachability

32

• Consider the regular language: 
 
 
 
where for all Σi = ⟨i, s⟩ s ∈ Σ

• If is the homomorphism sending characters in to their
corresponding character in , then the Parikh Image of the
language. asf is the set of all abstract trajectories of
trajectories in the language of

h Σi
Σ

G

• Since context-free languages are closed under intersection with
regular languages and inverse homomorphism, this language is
context-free

Can we compute abstract trajectories of a CFL?
VASR CFL-Reachability

32

• Consider the regular language: 
 
 
 
where for all Σi = ⟨i, s⟩ s ∈ Σ

• If is the homomorphism sending characters in to their
corresponding character in , then the Parikh Image of the
language. asf is the set of all abstract trajectories of
trajectories in the language of

h Σi
Σ

G

• Since context-free languages are closed under intersection with
regular languages and inverse homomorphism, this language is
context-free

• Let be a grammar generating this languageI(G)

Can we compute abstract trajectories of a CFL?
VASR CFL-Reachability

32

VASR CFL-Reachability
What is our logical summary?

 holds iff steps to along some program path! ℱ(y, y′) y y′

ℱ(y, y′) := ∃π . 𝒫I(G)(π) ∧ ℱwf(π) ∧ 𝒯V(π)

 is the abstract
trajectory of a

trajectory in

π

ℒ(G)

𝒫I(G)(π)

encodes transform
associated with on

 and
π

y y′

𝒯V(π)

Even symbols mark
final resets

ℱwf(π)

33

VASR CFL-Reachability
Related Work: Haase and Halfon 2014
• Identified the generalized Parikh image, similar to our abstract

trajectories, to be sufficient to compute the VASR transformation
associated with a word

• Showed that the reachability relation of a VASR along and
regular languages is computable

• [Chistikov 2015] showed that the reachability relation of a VASR
along communication-free Petri-net languages is computable

• Gap Filled: Our work shows that the reachability relation of a
VASR along context-free languages is computable

Σ*

34

Input Program Best Abstraction Exact Summary

of Abstraction

ℱ[y → f(X)]

4

5

1

2

3

save_tree

save_tree

4

5

1

2

3

save_tree

save_tree

f

What is our logical summary?
Context-Free VASR Reachability

We have a monotone inter-procedural analyzer!
35

Approximate
Summary

for Intra-procedural
Analysis

What can we use this to analyze?
Evaluation

Tree Counting Example

36

What can’t we use this to analyze?
Evaluation

Quicksort Example Identity Example

37

38

Q: How can we refine the language
considered by our summary?

38

Q: How can we refine the language
considered by our summary?

38

Q: How can we refine the language
considered by our summary?

A: Our summary has variables
representing the number of times

each edge appears in an execution
- we can synthesize bounds on
recursive depth and use them to

constrain these symbols.
38

• Related to the potential method
[Tarjan 1985] used in amortized
complexity analysis

• Goal is to find a function
 where

 is a resource bound on
the number of times procedure

 can be called in any
execution of procedure
starting in state

• Potential for example:

νq : (P × S) → ℤ
νq(p, ρ)

q
p

ρ

νsave_tree(save_tree, ρ)
= max(0, ρ(size))

Introduction
Inductive Linear Bounds

39

• A sufficient condition for
being a potential function
is inductiveness: the
potential of any state is
the resource cost and the
sub-potentials of any child
calls in any execution
beginning from that state

≥

Inductiveness
Inductive Linear Bounds

40

• A sufficient condition for
being a potential function
is inductiveness: the
potential of any state is
the resource cost and the
sub-potentials of any child
calls in any execution
beginning from that state

≥

Inductiveness
Inductive Linear Bounds

40

• Search for potential functions of the template

• Use a black-box intra-procedural analysis over a transformed
program to form a constraint system encoding inductiveness for a
symbolic vector of coefficients

• Leverage polyhedral techniques to solve constraint system

• Construct finite formula which holds iff a variable (Parikh variable
representing the number of function calls) is less than a (potentially
infinite) set of potential functions

• Bound extraction and application is monotone (assuming helper
intra-procedural analysis routine is monotone)

ν(X) = max(0, ⃗aT ⃗X)

⃗a

Method Overview
Inductive Linear Bounds

41

• Automatically derives linear resource bounds by generating a
constraint system via a set of Hoare-logic style inference rules
and solving the resulting system with a Linear Programming
solver

• Limitation: The Hoare-style inference rules, while sound, do not
ensure monotonicity of the resulting constraint system. In
particular, the inference rules use a heuristic weakening rule. This
can lead to unpredictable effects on the resource bound
computed for related programs

• Gap Filled: By using a monotone intraprocedural analysis
routine, our work is able to synthesize linear bounds matching a
similar template in a monotone way

Related Work: Carbonneaux, Hoffman, Shao 2015
Inductive Linear Bounds

42

What can we use this to analyze?
Evaluation

Quicksort Example Identity Example

43

Evaluation

44

• Best Labeled VASR Abstractions of LIRA transition formula
mappings

• VASR Reachability along context free languages

• Inductive Linear Bounds which are synthesized and applied
in a monotone way

• An implementation of the end-to-end summarization routine
that is comparable to the state of the art on standard
benchmarks and outperforms the SOTA in some domains

What did we achieve?
Conclusion

45

• Extending the VASR Model: How can we modify the VASR
model to better capture program behavior?

• Develop Abstract Trajectory Analysis: What are the algebraic
qualities of VASRs that allow us to compute its reachability
using abstract trajectories? Are there other useful classes of
transition systems which meet these conditions?

• CHC Solving: How can we apply similar techniques to those
found in this work to solve nonlinear Constrained Horn Clause
problems?

What’s next?
Future Work

46

Nikhil Pimpalkhare

Procedure Summarization
via Vector Addition Systems
and Inductive Linear Bounds
General Exam

October 2023
47

