Procedure Summarization via Vector Addition Systems and Inductive Linear Bounds

Nikhil Pimpalkhare

October 2023

Background

 Program Analysis: how much can we understand about the *runtime* behavior of a program from its *static* representation

- Program Analysis: how much can we understand about the *runtime* behavior of a program from its *static* representation
- A query: a program and a logical specification of desired behavior

- Program Analysis: how much can we understand about the *runtime* behavior of a program from its *static* representation
- A query: a program and a logical specification of desired behavior
- "Necessary" Property: Soundness

- Program Analysis: how much can we understand about the *runtime* behavior of a program from its *static* representation
- A query: a program and a logical specification of desired behavior
- "Necessary" Property: Soundness
- Desirable Property: Predictability
 - Changes to a program should have a predictable impact on its analysis

Background

- Intra-procedural Analysis: Perform program analysis in single procedures
 - Core Algorithmic Challenge: Loop Invariants
- Inter-procedural Analysis: Perform program analysis in the presence of recursive calls
 - Core Algorithmic Challenge:
 Procedure Summarization
- Summaries + Intra = Inter

Transition Formula: a (LIRA) formula over a set of program variables X and primed copies X' describing the pre and post state of a transition respectively

An Example Analysis Task

```
int mem_ops, buf;
void save_tree(int size) {
    buf += 1;
    if (size <= 1) {
        mem_ops += buf;
        buf = 0;
    } else {
        save_tree((size - 1) / 2);
        save_tree((size - 1) / 2);
    }
}</pre>
```

```
void main() {
```

```
mem_ops = 0; buf = 0;
int size = nondet_int();
assume(size >= 1);
save_tree(size);
assert(mem_ops <= size);</pre>
```

What is this task?

 Integer model of a program that recurses over a balanced binary tree, saving each node's value in an array and writing the array to disk whenever a leaf is reached

Why does the assertion hold?

- mem_ops + buf is incremented by one for each recursive call made
- buf must be set to zero at the end of any terminating execution
- There are at most *size* recursive calls made

How do we analyze programs predictably?

• A program can be viewed as a transition system $\langle S, \rightarrow \rangle$ where *S* is the state space and $\rightarrow \subseteq S \times S$ describes transitions

- A program can be viewed as a transition system $\langle S, \rightarrow \rangle$ where *S* is the state space and $\rightarrow \subseteq S \times S$ describes transitions
- $f: S \to S'$ is a simulation between $\langle S, \to \rangle$ and $\langle S', \to' \rangle$ if for all $u, u' \in S$, if $u \to u'$ then $f(u) \to' f(u')$

- A program can be viewed as a transition system $\langle S, \rightarrow \rangle$ where *S* is the state space and $\rightarrow \subseteq S \times S$ describes transitions
- $f: S \to S'$ is a simulation between $\langle S, \to \rangle$ and $\langle S', \to' \rangle$ if for all $u, u' \in S$, if $u \to u'$ then $f(u) \to' f(u')$
- A simulation implies that an algorithm for the reachability of ⟨S', →'⟩ can be used to over-approximate the reachability of ⟨S, →⟩, as:

$$\{u, u' : u \to u'\} \subseteq \{u, u' : f(u) \to' f(u')\}$$

- An abstraction of $\langle S, \rightarrow \rangle$ is another transition system $\langle S', \rightarrow' \rangle$ and a simulation *f* to it
- An abstraction is **best** if for any other abstraction in the same class $\langle S^{\dagger}, \rightarrow^{\dagger} \rangle$ and f^{\dagger} , there is a simulation f^{*} from $\langle S', \rightarrow' \rangle$ to $\langle S^{\dagger}, \rightarrow^{\dagger} \rangle$

- An abstraction of $\langle S, \to \rangle$ is another transition system $\langle S', \to' \rangle$ and a simulation *f* to it
- An abstraction is **best** if for any other abstraction in the same class $\langle S^{\dagger}, \rightarrow^{\dagger} \rangle$ and f^{\dagger} , there is a simulation f^{*} from $\langle S', \rightarrow' \rangle$ to $\langle S^{\dagger}, \rightarrow^{\dagger} \rangle$
- Best abstractions lead to **monotone** over-approximations: if there is a simulation \tilde{f} from $\langle S, \rightarrow \rangle$ to $\langle \bar{S}, \bar{\rightarrow} \rangle$, there will be a simulation between their best abstractions

How do we analyze programs predictably?

• Ensure "predictability" through *Monotonicity:* a more specific program always results in a more specific summary

How do we analyze programs predictably?

Ensure "predictability" through *Monotonicity:* a more specific program always results in a more specific summary

How do we analyze programs predictably?

Ensure "predictability" through *Monotonicity:* a more specific program always results in a more specific summary

Model of Input Program

- A program graph is a directed graph in which nodes represent control locations
 - Every edge carries a label from:
 - a set of standard edges $\boldsymbol{\Sigma}$
 - a set of procedures P
 - A program graph is additionally equipped with two functions
 *i*n : P → V and aut : P → V which
 map procedures to their entry and
 exit vertices respectively

Model of Input Program

- A **trajectory** through a procedure p in a program graph is a sequence in Σ^* corresponding to a sequence of edges in $(\Sigma \cup P)^*$ forming a path from in(p) to aut(p) in which every element $p' \in P$ has been replaced with a trajectory through p'
- Programs are understood as a program graph and a transition formula mapping $f: \Sigma \to TF(X)$ representing the state transformation
- The semantic meaning of a trajectory can be computed by composing the transition formulas of each edge in order.

Model of Input Program **Example Execution** An example trajectory: abb buf' = 0 $mem_ops' = mem_ops + buf + 1$ buf' = 0 $mem_ops' = mem_ops + buf + 1$ buf' = buf + 1mem_ops' = mem_ops

$$\begin{pmatrix} buf' = 0 \\ mem_ops' = mem_ops + buf + 3 \end{pmatrix}$$

- Vector Addition Systems [Karp, Miller 1969] are classically used to model parallel computing/distributed systems
- Rational Vector Addition Systems with Resets (VASR) transformations are the restricted subclass of transition formulas which can be written as:

$$\overrightarrow{X'} = \overrightarrow{r} * \overrightarrow{X} + \overrightarrow{a}$$

where $\vec{r} \in \{0,1\}^{|X|}$, $\vec{a} \in \mathbb{Q}^{|X|}$, and * is elementwise product

Ex:
$$x' = 1 * x + 3 \land y' = 0 * y + 0$$

 We consider VASRs over rational numbers instead of over naturals as the reachability of the latter is Ackermanncomplete [Czerwiński 2021]

- A VASR $\mathbb V$ is a transition formula mapping where each formula is a VASR transformation
- Letting ρ denote valuations over X, \mathbb{V} simulates f according to f if...

- A VASR $\mathbb V$ is a transition formula mapping where each formula is a VASR transformation
- Letting ρ denote valuations over X, \mathbb{V} simulates f according to f if...

- A VASR $\mathbb V$ is a transition formula mapping where each formula is a VASR transformation
- Letting ρ denote valuations over X, \mathbb{V} simulates f according to f if...

If \mathscr{F} holds iff y transitions to y' along some trajectory w in the language of our program graph according to \mathbb{V} ,

If \mathscr{F} holds iff y transitions to y' along some trajectory w in the language of our program graph according to \mathbb{V} ,

Then $\mathscr{F}[y \to f(x), y' \to f(x')]$ holds if *x* can transition to *x'* along some trajectory *w* according to *f*

If \mathscr{F} holds iff y transitions to y' along some trajectory w in the language of our program graph according to \mathbb{V} ,

Then $\mathscr{F}[y \to f(x), y' \to f(x')]$ holds if *x* can transition to *x'* along some trajectory *w* according to *f*

If \mathscr{F} holds iff y transitions to y' along some trajectory w in the language of our program graph according to \mathbb{V} ,

Then $\mathscr{F}[y \to f(x), y' \to f(x')]$ holds if *x* can transition to *x'* along some trajectory *w* according to *f*

So $\mathscr{F}[y \to f(x), y' \to f(x')]$ can be used as an over-approximate summary

If \mathscr{F} holds iff y transitions to y' along some trajectory w in the language of our program graph according to \mathbb{V} ,

Then $\mathscr{F}[y \to f(x), y' \to f(x')]$ holds if *x* can transition to *x'* along some trajectory *w* according to *f*

So $\mathscr{F}[y \to f(x), y' \to f(x')]$ can be used as an over-approximate summary

• We restrict our attention to linear simulations

Example VASR Abstraction

Input Program

VASR Abstraction

Example VASR Abstraction

Example Abstract Execution

Which step are we covering?

Best VASR Abstractions of f

Abstracting f(s)

The Combination Step

• If \mathbb{V} is a VASR abstraction of f...

The Combination Step

• If \mathbb{V} is a VASR abstraction of f...

The Combination Step

If \mathbb{V} is the best VASR abstraction of f...

The Combination Step

If \mathbb{V} is the best VASR abstraction of f...

The Combination Step

If \mathbb{V} is the best VASR abstraction of f...

Insights from the Combination Step

- For g to be a simulation between VASRs, each dimension of the output must only be dependent on either reset or incremented dimensions of the input
- The state space of a VASR is well represented by a separated space, a linear space S along with a canonical decomposition as a direct sum $S = \bigoplus H$
- The combination step can cause a potentially exponential blowup in the state space of the resulting VASR to ensure best abstraction

Related Work: Silverman & Kincaid 2019

- Extracts a set of VASR transformations simulating a single transition formula representing the body of a loop
- Uses reachability relation of the resulting VASR as an overapproximate summary for the loop
- Limitation: Extraction process relies on the convexity of the underlying theory. While it extracts best abstractions for Linear Rational Arithmetic, does not extract best abstractions for Linear Integer/Rational Arithmetic.
- **Gap Filled:** Our work is able to compute best VASR abstractions for LIRA transition formula systems

Overview Any Questions?

Which step are we covering?

Background

What do we need to know?

- Context Free Grammar:
 - Formalism for describing a set of strings over some alphabet
 - Production Rules: consume one nonterminal and produce any string of terminals and nonterminals
- The set of all trajectories through a program graph is context free

Example Derivations

$$X \to aY \to abX \to abc$$

 $X \rightarrow aY \rightarrow abX \rightarrow abaY \rightarrow ababX \rightarrow ababac$

$$X \to aY \to abX \to \dots \to (ab)^n c$$

Background

What do we need to know?

- The **Parikh image** of a word w in Σ^* is a function $\pi : \Sigma \to \mathbb{N}$ mapping each character to its number of occurrences in w
- The Parikh image of a language is the set of Parikh images of all words in the language
- [Verma, Seidl, Schwentick 2005] Given a grammar G, we can compute in linear time a logical formula $\mathscr{P}_G(\pi)$ which holds iff π is the Parikh image of some word in the language of G

Analyzing the Single Dimension Case

• Without resets, the Parikh image is sufficient to compute the composition of VASR transformations because they commute

Analyzing the Single Dimension Case

• Without resets, the Parikh image is sufficient to compute the composition of VASR transformations because they commute

Analyzing the Single Dimension Case

• Without resets, the Parikh image is sufficient to compute the composition of VASR transformations because they commute

Trajectories		Transforms
aaaba —	4 a, 1 b	$\rightarrow X' = X + 6$
ababa —	3 a, 2 b	$\rightarrow X' = X + 7$
aaa —	3 a	$\bullet X' = X + 3$

- Without resets, the Parikh image is sufficient to compute the composition of VASR transformations because they commute
- Intuition for resets: it is sufficient to identify the final reset in a word and the Parikh image of the sub-word after because all remaining operations commute

$a \qquad X' = 1 * X + 1$	Trajectories	Transforms
$b \qquad X' = 0 * X + 2$	aaaba	
	ababa ———— aaa ———	
$\Sigma = \{a, b\}$	29	

- Without resets, the Parikh image is sufficient to compute the composition of VASR transformations because they commute
- Intuition for resets: it is sufficient to identify the final reset in a word and the Parikh image of the sub-word after because all remaining operations commute

- Without resets, the Parikh image is sufficient to compute the composition of VASR transformations because they commute
- Intuition for resets: it is sufficient to identify the final reset in a word and the Parikh image of the sub-word after because all remaining operations commute

- Without resets, the Parikh image is sufficient to compute the composition of VASR transformations because they commute
- Intuition for resets: it is sufficient to identify the final reset in a word and the Parikh image of the sub-word after because all remaining operations commute

Trajectories Transforms		
$aaaba^1$ a after reset $X' = 3$		
ababa 1 a after reset $X' = 3$		
$aaa \xrightarrow{3 a, no reset} X' = X + 3$		

Formalizing "Final Resets"

Formalizing "Final Resets"

- Let *d* be the dimension of our VASR \mathbb{V} . To compute the transformation associated with a trajectory *w* we need:
 - 1. The locations of the final resets of each dimension
 - 2. The Parikh Images of the subwords between these final resets

Formalizing "Final Resets"

- Let *d* be the dimension of our VASR \mathbb{V} . To compute the transformation associated with a trajectory *w* we need:
 - 1. The locations of the final resets of each dimension
 - 2. The Parikh Images of the subwords between these final resets
- Abstract Trajectory $\pi : (\Sigma \times [2d + 1]) \rightarrow \mathbb{N}$: a formalization of the necessary information of a trajectory to compute its transition

• For any even $i, \sum_{s \in \Sigma} \pi(s, i) \le 1$ (High level: even symbols identify the final resets)

Formalizing "Final Resets"

- Let *d* be the dimension of our VASR \mathbb{V} . To compute the transformation associated with a trajectory *w* we need:
 - 1. The locations of the final resets of each dimension
 - 2. The Parikh Images of the subwords between these final resets
- Abstract Trajectory $\pi : (\Sigma \times [2d + 1]) \rightarrow \mathbb{N}$: a formalization of the necessary information of a trajectory to compute its transition

• For any even $i, \sum_{s \in \Sigma} \pi(s, i) \le 1$ (High level: even symbols identify the final resets)

 An abstract trajectory is well-formed according to V if the final reset of each dimension from left to right is at an even symbol

Formalizing "Final Resets"

- Let *d* be the dimension of our VASR \mathbb{V} . To compute the transformation associated with a trajectory *w* we need:
 - 1. The locations of the final resets of each dimension
 - 2. The Parikh Images of the subwords between these final resets
- Abstract Trajectory $\pi : (\Sigma \times [2d + 1]) \rightarrow \mathbb{N}$: a formalization of the necessary information of a trajectory to compute its transition

• For any even $i, \sum_{s \in \Sigma} \pi(s, i) \le 1$ (High level: even symbols identify the final resets)

- An abstract trajectory is well-formed according to V if the final reset of each dimension from left to right is at an even symbol
- An abstract trajectory π represents a trajectory w if there is some decomposition $w = w_1 \dots w_{2d+1}$ such that the character count of symbol s in w_i is $\pi(s, i)$

Formalizing "Final Resets"

• Let's look at some examples! w = aabba, b resets

Formalizing "Final Resets"

• Let's look at some examples! w = aabba, b resets

Can we compute abstract trajectories of a CFL?

Can we compute abstract trajectories of a CFL?

• Consider the regular language:

$$O \triangleq \Sigma_1^* (\Sigma_2 + \epsilon) \Sigma_3^* \dots \Sigma_{2d-1}^* (\Sigma_{2d} + \epsilon) \Sigma_{2d+1}^*$$

where $\Sigma_i = \langle i, s \rangle$ for all $s \in \Sigma$

Can we compute abstract trajectories of a CFL?

• Consider the regular language:

$$O \triangleq \Sigma_1^* (\Sigma_2 + \epsilon) \Sigma_3^* \dots \Sigma_{2d-1}^* (\Sigma_{2d} + \epsilon) \Sigma_{2d+1}^*$$

where $\Sigma_i = \langle i, s \rangle$ for all $s \in \Sigma$

• If h is the homomorphism sending characters in Σ_i to their corresponding character in Σ , then the Parikh Image of the language $h^{-1}(\mathcal{L}(G)) \cap O$ is the set of all abstract trajectories of trajectories in the language of G

Can we compute abstract trajectories of a CFL?

• Consider the regular language:

$$O \triangleq \Sigma_1^* (\Sigma_2 + \epsilon) \Sigma_3^* \dots \Sigma_{2d-1}^* (\Sigma_{2d} + \epsilon) \Sigma_{2d+1}^*$$

where $\Sigma_i = \langle i, s \rangle$ for all $s \in \Sigma$

- If h is the homomorphism sending characters in Σ_i to their corresponding character in Σ , then the Parikh Image of the language $h^{-1}(\mathcal{L}(G)) \cap O$ is the set of all abstract trajectories of trajectories in the language of G
- Since context-free languages are closed under intersection with regular languages and inverse homomorphism, this language is context-free

Can we compute abstract trajectories of a CFL?

• Consider the regular language:

$$O \triangleq \Sigma_1^* (\Sigma_2 + \epsilon) \Sigma_3^* \dots \Sigma_{2d-1}^* (\Sigma_{2d} + \epsilon) \Sigma_{2d+1}^*$$

where $\Sigma_i = \langle i, s \rangle$ for all $s \in \Sigma$

- If h is the homomorphism sending characters in Σ_i to their corresponding character in Σ , then the Parikh Image of the language $h^{-1}(\mathcal{L}(G)) \cap O$ is the set of all abstract trajectories of trajectories in the language of G
- Since context-free languages are closed under intersection with regular languages and inverse homomorphism, this language is context-free
- Let I(G) be a grammar generating this language

What is our logical summary?

 $\mathscr{F}(y, y')$ holds iff y steps to y' along some program path!

Related Work: Haase and Halfon 2014

- Identified the generalized Parikh image, similar to our abstract trajectories, to be sufficient to compute the VASR transformation associated with a word
- Showed that the reachability relation of a VASR along Σ^* and regular languages is computable
- [Chistikov 2015] showed that the reachability relation of a VASR along communication-free Petri-net languages is computable
- **Gap Filled:** Our work shows that the reachability relation of a VASR along context-free languages is computable

Context-Free VASR Reachability

What is our logical summary?

We have a monotone inter-procedural analyzer!

What can we use this to analyze?

36

```
int end;
int start:
char EOF;
char lexer(char* s, int slen) {
    if (slen <= 0) {return EOF;}</pre>
    char c = s[0];
    if (c == '\0') {
        end += 1;
        start = end;
    } else {
        end += 1;
    lexer(s + 1, slen - 1);
int main() {
        start = __VERIFIER_nondet_int();
        end = start;
        lexer(0, __VERIFIER_nondet_int());
        __VERIFIER_assert(start <= end);</pre>
        return 0;
```

int leafs; int internal_nodes; void tree_count() { if (__VERIFIER_nondet_int()) { leafs += 1;} else { internal_nodes += 1; tree_count(); tree_count(); return; int main() { leafs = 0; internal_nodes = 0; tree_count(); __VERIFIER_assert(internal_nodes + 1 == leafs; return 0;

What can't we use this to analyze?

37

```
int id (int x) {
    if (x <= 0) {
        return 0;
    } else {
        return id(x - 1) + 1;
int main() {
    int number = __VERIFIER_nondet_int();
    int result = id(number);
    ___VERIFIER_assert(
        (number < 0 && result == 0) ||
        (result == number));
```

int call_count; void quicksort (int left, int right) { call_count += 1; if (right - left <= 1) { return; } else { int pivot = __VERIFIER_nondet_int(); ___VERIFIER_assume (left <= pivot && pivot < right);</pre> quicksort(left, pivot); quicksort(pivot + 1, right); int main() { call_count = 0; int size = __VERIFIER_nondet_int(); __VERIFIER_assume (1 <= size);</pre> quicksort(0, size); __VERIFIER_assert(call_count <= 2 * size + 1

Q: How can we refine the language considered by our summary?

Q: How can we refine the language considered by our summary?

Q: How can we refine the language considered by our summary?

A: Our summary has variables representing the number of times each edge appears in an execution - we can synthesize bounds on recursive depth and use them to constrain these symbols.

Introduction

- Related to the *potential method* [Tarjan 1985] used in amortized complexity analysis
- Goal is to find a function $u_q : (P \times S) \to \mathbb{Z} \text{ where}$ $u_q(p, \rho) \text{ is a resource bound on}$ the number of times procedure q can be called in any
 execution of procedure pstarting in state ρ
- Potential for example: $\nu_{save_tree}(save_tree, \rho)$ $= max(0, \rho(size))$

```
int mem_ops, buf;
void save_tree(int size) {
    buf += 1;
    if (size <= 1) {
        mem_ops += buf;
        buf = 0;
    } else {
        save_tree((size - 1) / 2);
        save_tree((size - 1) / 2);
    }
}</pre>
```

void main() {
 mem_ops = 0; buf = 0;
 int size = nondet_int();
 assume(size >= 1);
 save_tree(size);
 assert(mem_ops <= size);</pre>

Inductiveness

 A sufficient condition for being a potential function is *inductiveness:* the potential of any state is ≥ the resource cost and the sub-potentials of any child calls in any execution beginning from that state

```
int mem_ops, buf;
void save_tree(int size) {
    buf += 1;
    if (size <= 1) {
        mem_ops += buf;
        buf = 0;
    } else {
        save_tree((size - 1) / 2);
        save_tree((size - 1) / 2);
    }
}</pre>
```

```
void main() {
    mem_ops = 0; buf = 0;
    int size = nondet_int();
    assume(size >= 1);
    save_tree(size);
    assert(mem_ops <= size);
    }
}</pre>
```

Inductiveness

 A sufficient condition for being a potential function is *inductiveness:* the potential of any state is ≥ the resource cost and the sub-potentials of any child calls in any execution beginning from that state

```
int mem_ops, buf;
void save_tree(int size) {
    buf += 1;
    if (size <= 1) {
        mem_ops += buf;
        buf = 0;
    } else {
        save_tree((size - 1) / 2);
        save_tree((size - 1) / 2);
    }
}</pre>
```

 $v(\text{save_tree}, \rho) \ge 0$

if size ≤ 1

$$\begin{split} v(\text{save_tree}, \rho) &\geq 2 + v \begin{pmatrix} \text{save_tree}, \\ \rho \begin{bmatrix} \text{size} \mapsto (\rho(\text{size}) - 1)/2 \\ \text{buf} \mapsto \rho(\text{buf}) + 1 \end{bmatrix} \end{pmatrix} \\ &+ v \begin{pmatrix} \text{save_tree}, \\ \rho \begin{bmatrix} \text{size} \mapsto (\rho(\text{size}) - 1)/2 \\ \text{buf} \mapsto \rho(\text{buf}) + 1 \end{bmatrix} \end{pmatrix} & \text{if size} > 1 \end{split}$$

Inductive Linear Bounds Method Overview

- Search for potential functions of the template $\nu(X) = \max(0, \vec{a}^T \overline{X})$
- Use a black-box intra-procedural analysis over a transformed program to form a constraint system encoding *inductiveness* for a symbolic \vec{a} vector of coefficients
- Leverage polyhedral techniques to solve constraint system
- Construct finite formula which holds iff a variable (Parikh variable representing the number of function calls) is less than a (potentially infinite) set of potential functions
- Bound extraction and application is **monotone** (assuming helper intra-procedural analysis routine is monotone)

Related Work: Carbonneaux, Hoffman, Shao 2015

- Automatically derives linear resource bounds by generating a constraint system via a set of Hoare-logic style inference rules and solving the resulting system with a Linear Programming solver
- Limitation: The Hoare-style inference rules, while sound, do not ensure monotonicity of the resulting constraint system. In particular, the inference rules use a heuristic weakening rule. This can lead to unpredictable effects on the resource bound computed for related programs
- Gap Filled: By using a monotone intraprocedural analysis routine, our work is able to synthesize linear bounds matching a similar template in a monotone way

What can we use this to analyze?

43

```
int id (int x) {
    if (x <= 0) {
        return 0;
    } else {
        return id(x - 1) + 1;
int main() {
    int number = __VERIFIER_nondet_int();
    int result = id(number);
    ___VERIFIER_assert(
        (number < 0 && result == 0) ||
        (result == number));
```

int call_count; void quicksort (int left, int right) { call_count += 1; if (right - left <= 1) { return; } else { int pivot = __VERIFIER_nondet_int(); ___VERIFIER_assume (left <= pivot && pivot < right);</pre> quicksort(left, pivot); quicksort(pivot + 1, right); int main() { call_count = 0; int size = __VERIFIER_nondet_int(); __VERIFIER_assume (1 <= size);</pre> quicksort(0, size); __VERIFIER_assert(call_count <= 2 * size +1);

		VSB			Korn		UAutomizer		
	#tasks	#0	correc	et time	#	correc	t time	#correc	t time
Recursive-Safe	17		4	27.6		14	1825.7	12	3366.3
RecursiveSimple-Safe	35		20	102.7		35	67.1	28	5872.7
cfg-crafted	12		12	20.7		4	4202.9	9	1914.4
Total	64		36	151.1		53	6095.7	49	11153.4
				VSB		1	/S	CRA	
	#task	s	#correct time		e	#correct time		#correcttime	
Recursive-Safe	17		4	27.	6	4	27.1	3	22.0
RecursiveSimple-Safe	e 35		20) 102.	7	19	86.4	13	39.7
cfg-crafted	12		12	2 20.	7	7	20.5	6	14.4
Total	64		36	5 151.	1	30	134.0	22	76.1

Conclusion

What did we achieve?

- Best Labeled VASR Abstractions of LIRA transition formula mappings
- VASR Reachability along context free languages
- Inductive Linear Bounds which are synthesized and applied in a *monotone* way
- An implementation of the end-to-end summarization routine that is comparable to the state of the art on standard benchmarks and outperforms the SOTA in some domains

Future Work

What's next?

- Extending the VASR Model: How can we modify the VASR model to better capture program behavior?
- **Develop Abstract Trajectory Analysis:** What are the algebraic qualities of VASRs that allow us to compute its reachability using abstract trajectories? Are there other useful classes of transition systems which meet these conditions?
- CHC Solving: How can we apply similar techniques to those found in this work to solve nonlinear Constrained Horn Clause problems?

Procedure Summarization via Vector Addition Systems and Inductive Linear Bounds

Nikhil Pimpalkhare

October 2023